A 2D porous pentiptycene-based MOF for efficient detection of Ba²⁺

and selective adsorption of dyes from water

Minghui Zhang,^a Ziqiang Qi,^a Yang Feng,^a Bingbing Guo,^a Yujian Hao,^a Zhuo Xu,^a Liangliang Zhang,^a* and Daofeng Sun^a

State Key Laboratory of Heavy Oil Processing, College of Science, China University

of Petroleum (East China), Qingdao, Shandong 266580, P. R. China

Correspondence and requests for materials should be addressed to L. Z. (E-mail:

liangliangzhang@upc.edu.cn

1. ¹H NMR spectrum of ligand H₂L.

Figure S1. ¹H NMR spectrum of ligand H₂L.

2. Crystal structure.

Figure S2. Connolly surface representation along the *a* axis.

Figure S3. Connolly surface representation along the *c* axis.

3. Powder X-ray diffraction and thermogravimetric analysis.

Figure S4. PXRD patterns of UPC-28.

Figure S5. The TGA curve for UPC-28.

4. Crystal data for UPC-28.

Identification code	UPC-28		
Empirical formula	$C_{114}H_{80}Mg_{3}N_{2}O_{18}$		
Formula weight	1838.73		
Temperature/K	293(2)		
Crystal system	monoclinic		
Space group	$P2_1/n$		
a/Å	11.8132(2)		
b/Å	34.5225(5)		
$c/\text{\AA}$	14.9681(3)		
<i>a</i> /°	90.00		
$eta/^{\circ}$	101.5443(18)		
γ/°	90.00		
Volume/Å ³	5980.80(19)		
Ζ	2		
ρcalcg/cm ³	1.021		
μ/mm^{-1}	0.701		
<i>F</i> (000)	1916.0		
Reflections collected	21771		
	$10657 [R_{int} = 0.0230,$		
independent reflections	$R_{sigma} = 0.0343$]		
Data/restraints/parameters	10657/0/623		
Goodness-of-fit on F2	1.081		
Final P indexes [1>-2-(1)]	$R_1 = 0.0759,$		
$1 \text{ mar } \mathbf{K} \text{ mucaes } [1/-20 (1)]$	$wR_2 = 0.2256$		
Final R indexes [all data]	$R_1 = 0.0866,$		
That it indexes [an data]	$wR_2 = 0.2379$		
Largest diff. peak/hole / e Å-3	1.79/-0.81		

Table S1: Crystal Data for UPC-28

 $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR_2 = [\Sigma w (F_o^2 - F_c^2)^2] / \Sigma w (F_o^2)^2]^{1/2}$

Table S2: Selected bond lengths (Å) and angles (°) for UPC-28					
Mg1—Mg2 ⁱ	3.6488 (11)	Mg1—Mg2	3.6488 (11)		
Mg1—O1	2.0510 (17)	Mg1—O1 ⁱ	2.0510 (17)		
Mg1—O2	2.0768 (19)	Mg1—O2 ⁱ	2.0768 (18)		
Mg1—O4	2.145 (2)	Mg1—O4 ⁱ	2.145 (2)		
Mg2—O3 ⁱⁱ	2.039 (2)	Mg2—O4	2.150 (2)		
Mg2—O5	2.016 (2)	Mg2—O6	2.093 (2)		
Mg2—07	2.074 (2)	Mg2—O16	2.074 (3)		
Mg2 ⁱ —Mg1—Mg2	180.0	O1 ⁱ —Mg1—Mg2 ⁱ	70.99 (7)		
O1 ⁱ —Mg1—Mg2	109.01 (7)	O1—Mg1—Mg2 ⁱ	109.02 (7)		
O1—Mg1—Mg2	70.98 (7)	O1-Mg1-O1 ⁱ	180.0		
O1—Mg1—O2 ⁱ	92.33 (8)	O1 ⁱ —Mg1—O2	92.33 (8)		
O1—Mg1—O2	87.67 (8)	O1 ⁱ —Mg1—O2 ⁱ	87.67 (8)		
O1-Mg1-O4 ⁱ	87.20 (8)	O1 ⁱ —Mg1—O4	87.20 (8)		
O1 ⁱ —Mg1—O4 ⁱ	92.80 (8)	O1—Mg1—O4	92.80 (8)		
O2 ⁱ —Mg1—Mg2	110.88 (7)	O2—Mg1—Mg2 ⁱ	110.88 (7)		
O2—Mg1—Mg2	69.12 (7)	O2 ⁱ —Mg1—Mg2 ⁱ	69.12 (7)		
O2—Mg1—O2 ⁱ	180.00 (9)	O2-Mg1-O4 ⁱ	87.54 (9)		
O2 ⁱ —Mg1—O4	87.54 (9)	O2 ⁱ —Mg1—O4 ⁱ	92.46 (9)		
O2—Mg1—O4	92.46 (9)	O4 ⁱ —Mg1—Mg2	148.11 (6)		
O4—Mg1—Mg2 ⁱ	148.11 (6)	O4 ⁱ —Mg1—Mg2 ⁱ	31.89 (6)		
O4—Mg1—Mg2	31.89 (6)	O4—Mg1—O4 ⁱ	180.0		
O3 ⁱⁱ —Mg2—Mg1	68.83 (7)	O3 ⁱⁱ —Mg2—O4	92.02 (9)		
O3 ⁱⁱ —Mg2—O6	88.99 (9)	O3 ⁱⁱ —Mg2—O7	175.58 (12)		
O3 ⁱⁱ —Mg2—O16	87.44 (11)	O4—Mg2—Mg1	31.80 (6)		
O5—Mg2—Mg1	70.52 (8)	O5—Mg2—O3 ⁱⁱ	91.34 (10)		
O5—Mg2—O4	90.67 (10)	O5—Mg2—O6	178.15 (12)		
O5—Mg2—O7	92.68 (10)	O5—Mg2—O16	89.71 (12)		
O6—Mg2—Mg1	111.29 (8)	O6—Mg2—O4	91.14 (9)		
O7—Mg2—Mg1	114.32 (10)	O7—Mg2—O4	89.77 (11)		
O7—Mg2—O6	86.93 (10)	O7—Mg2—O16	90.74 (13)		
O16—Mg2—Mg1	148.04 (9)	O16—Mg2—O4	179.34 (10)		
O16—Mg2—O6	88.48 (12)	Mg1—O4—Mg2	116.31 (9)		

5. Selected bond lengths (Å) and angles (°) for UPC-28.

6. Gas sorption for UPC-28.

Figure S6. The pore size distribution of UPC-28.

Table S2. Equation	noromotors for the single s	ita Lanamuir Fraundlich	model (CO /NL)
Table 55. Equation	Darameters for the single-s	ne Langmun-rieununen	11100001.0007/1027

Adsorbates	a (mmol/g)	b (kPa ⁻¹)	c	R ²
CO ₂	8.42992	0.00324	0.95741	1
N_2	0.25856	0.00431	1.13565	0.99952
Tabl	e S4: Equation parameters for	or the single-site Langmuin	r-Freundlich model.(Co	O ₂ /CH ₄)
Adsorbates	a (mmol/g)	b (kPa ⁻¹)	с	R ²
CO ₂	8.42992	0.00324	0.95741	1
CH ₄	3.92289	0.00162	1.00498	0.99999
Table	e S5: Equation parameters fo	r the single-site Langmuir	-Freundlich model.(C ₂	H_2/CH_4)
Adsorbates	a (mmol/g)	b (kPa ⁻¹)	c	\mathbb{R}^2
C_2H_2	174.31333	0.000231	0.75931	0.99706
CH ₄	3.92289	0.00162	1.00498	0.99999
Table	S6: Equation parameters for	the single-site Langmuir-	Freundlich model.(C ₂ 1	H ₂ / C ₂ H ₆)
Adsorbates	a (mmol/g)	b (kPa ⁻¹)	с	R ²
C_2H_2	174.31333	0.000231	0.75931	0.99706
C_2H_6	0.71729	0.003	1.2934	0.9966
Table	S7: Equation parameters for	the single-site Langmuir-	Freundlich model.(C ₃)	H ₆ / C ₃ H ₈)
Adsorbates	a (mmol/g)	b (kPa ⁻¹)	с	R ²
C II	1 27756	0.00232	1.34523	0.99728
C_3H_6	1.27750	0.00252		

Figure S7. The CO₂ and CH₄ adsorption capacity for UPC-28 at 298K.

Figure S8. The C_2H_2 / CH_4 selectivity for **UPC-28** at 273 K calculated by the IAST method for two C_2H_2 concentrations (C_2H_2 / CH_4 : 10/90 and 50/50) in C_2H_2 / CH_4 binary mixtures.

Figure S9. The C_3H_6/C_3H_8 selectivity for **UPC-28** at 273 K calculated by the IAST method for two C_3H_6 concentrations (C_3H_6/C_3H_8 : 10/90 and 50/50) in C_3H_6/C_3H_8 binary mixtures.

7. Luminescence spectra of the UPC-28 dispersed in aqueous solutions with different metal ions.

Figure S10. Fluorescent spectra of 2 mg/mL **UPC-28** dispersed in aqueous solution treated with: a) Cu²⁺, b) Cd²⁺, c) Mg²⁺, d) Zn²⁺, e) Ca²⁺, f) Ni²⁺, g) Pb²⁺ and h) Co²

Figure S11. Fluorescent spectra of UPC-28 dispersed in different solvents.

8. Adsorption of dye molecules.

Figure S12. (a) Photographs of UPC-28 in aqueous solutions; (b) Photographs of UPC-28 in MB aqueous solutions after interaction; (c) Photographs of UPC-28 in RhB aqueous solutions after interaction.