Electronic Supporting Information (ESI)

Ethanol-water ambient precipitation of {111} facets exposed Ag₃PO₄ tetrahedra and the hybrid with graphene oxide for outstanding photoactivity and stability

Guo-Ying Zhang*, Xue-Min Wei, Xue Bai, Chun-Mei Liu, Bing-Yu Wang, Jing-Wang Liu

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China

*Corresponding author. E-mail: <u>hxxyzgy@tjnu.edu.cn</u> Fax: +86 22 23766532

Fig. S1 XRD patterns of series Ag_3PO_4 products obtained with ethanol volume of (a) 0 mL, (b) 3.0 mL, (c) 6.0 mL, (d) 9.0 mL, (e) 12.0 mL and (f) 17.0 mL.

Fig S2. Raman spectra of GO sheets, pristine Ag₃PO₄ and GO/Ag₃PO₄-0.6wt% hybrid with magnified D and G bands in inset.

Fig. S3 FTIR spectra of GO, Ag₃PO₄ and series GO/Ag₃PO₄ hybrids.

Fig. S4 Adsorption-desorption experiments of GO/Ag₃PO₄ hybrids.

Fig. S5 Photocatalytic degradation of RhB in 25 min irradiation over series Ag₃PO₄ samples prepared in ethanol-water solvent with different ethanol volume.

Fig. S6 Reproducibility of bare Ag_3PO_4 bulks and tetrahedra obtained without and with 6.0 mL ethanol as well as GO hybridized Ag_3PO_4 tetrahedra with different GO amount.

Fig. S7 Temporal evolution of RhB absorption over GO hybridized Ag_3PO_4 nanoparticles in Refs [23] (a) and [25] (b), respectively.

Fig. S8 Comparison of photocatalytic activity to different dyes in 10 min and to colorless phenol in 30 min over the Ag_3PO_4 tetrahedra and GO/Ag_3PO_4 -0.6wt% hybrid.

Table S1 Band potential levels of Ag_3PO_4 tetrahedra calculated from absolute electronegativity of the semiconductor.

Semiconductor	Absolute	Estimated	Calculated CB	Calculated VB
	electronegativity(X)	band-gap E _g (eV)	edge (V)	edge (V)
Ag ₃ PO ₄	5.96	2.08	0.42	2.50

The valence band (VB) and conduction band (CB) potentials of Ag_3PO_4 tetrahedra are theoretically calculated by the equation $E_{CB}^{0} = X - E^c - 1/2E_g$, where X is the absolute electronegativity of Ag_3PO_4 , E^c is the energy of free electrons on the hydrogen scale (ca. 4.5 eV), and E_g is the band gap of Ag_3PO_4 tetrahedra which can be obtained from the DRS spectrum.