Electronic Supplementary Information

Experimental Section

Materials: KOH, NH₄F, and urea were purchased from Beijing Chemical Corp. $H_2PtCl_6 \cdot 6H_2O$ and NiCl₂ $\cdot 6H_2O$ were purchased from Aladdin Ltd (China). Pt/C (20 wt% Pt) was provided by Alfa Aesar (China) Chemicals Co. Ltd. Nafion (5 wt%) was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. All the chemicals in the experiments were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Preparation of Ni(OH)₂ **NA/CC:** In a typical synthesis, 2.25 mmol NiCl₂·6H₂O, 10 mmol urea, and 4 mmol NH₄F were dissolved in 40 mL ultrapure water under vigorous stirring for 20 min. Then mixture solution and a piece of CC (3 cm \times 2 cm) were transferred into a Teflon-lined stainless autoclave (50 mL), and maintained at 120 °C for 6 h in an electric oven. After the autoclave cooled down naturally, the resulting Ni(OH)₂ NA/CC was taken out and washed with ultrapure water.

Preparation of PtNi-Ni NA/CC: Firstly, the Ni(OH)₂ NA/CC were immersed in 25 mL H₂PtCl₆ aqueous solution (0.08 mg mL⁻¹). And then they were transferred into a 40 mL Teflon-lined stainless-steel autoclave and hydrothermally treated at 120 °C for 4 h. Finally, the resulting PtO₂-Ni(OH)₂ NA/CC was placed in the furnace and heated to 400 °C with a heating speed of 5 °C min⁻¹ under a flowing H₂/Ar atmosphere. After reacting 2 h at 400 °C, the system was allowed to cool down to room temperature naturally still under a flowing H₂/Ar atmosphere. Finally, the black PtNi-Ni NA/CC was collected for further characterization.

Preparation of Ni NA/CC: The $Ni(OH)_2$ NA/CC was placed in the furnace and treated under the same hydrogen reduction reaction conditions as above.

Preparation of PtNi/CC and PtNi-Ni/CC: PtNi alloy nanoparticles were synthesized according to a previously reported method.¹ Typically, 351.0 mg of $K_2PtCl_6\cdot 6H_2O$, 225.8 mg of NiCl_2 $\cdot 6H_2O$, and 777.8 mg of Na₃C₆H₅O₇ were added to 200 mL of ethylene glycol to form a mixture in a three-necked flask and then the pH of the mixture was adjusted to 11 with 1 M KOH. Subsequently, the mixture was

heated to 180 °C for 6 h under a N₂ atmosphere. After cooling down to room temperature, the mixture was filtered, washed and dried to obtain PtNi alloy nanoparticles. To prepare PtNi ink, 40 mg PtNi alloy nanoparticles and 10 μ L 5 wt% Nafion solution were dispersed in 1 mL water/ethanol solvent (v:v = 1:1) with sonication for 30 min. Then 22.5 μ L catalyst ink was loaded on bare CC and Ni NA/CC (1 cm²) with a catalyst loading of 0.9 mg cm⁻².

Preparation of Pt/C on CC: To obtain commercial Pt/C loaded electrodes, Pt/C ink was prepared as above. Then 22.5 μ L catalyst ink was coated onto bare CC (1 cm²) with a catalyst loading of 0.9 mg cm⁻².

Characterizations: XRD data was performed using a LabX XRD-6100 X-ray diffractometer Cu Kα radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were collected on a Hitachi S-4800 field emission scanning electron microscope at an accelerating voltage of 20 kV. TEM measurements were carried out on a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. ICP-MS analysis was performed on ThermoScientific iCAP6300.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system using PtNi-Ni NA/CC as the working electrode, a graphite rod as the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. Given that as-measured reaction currents do not directly reflect the intrinsic behavior of catalysts due to the effect of ohmic resistance, an *iR* correction was applied to all LSV curves for further analysis, and all potentials were reported on a reversible hydrogen electrode (RHE) scale unless specifically stated. The potentials reported in this work were calibrated to RHE, using the following equation: E (RHE) = E (SCE) + (0.242 + 0.059 pH) V = E (SCE) + 1.009 V. Polarization curves were obtained using linear sweep voltammetry with a scan rate of 5 mV s⁻¹. All experiments were carried out at room temperature (~25 °C).

FE determination: The FE was calculated by comparing the amount of measured H₂ generated by potentiostatic cathode electrolysis with calculated H₂ (assuming 100% FE). GC analysis was carried out on GC-2014C (Shimadzu Co.) with thermal conductivity detector and nitrogen carrier gas. Pressure data during electrolysis were recorded using a CEM DT-8890 Differential Air Pressure Gauge Manometer Data Logger Meter Tester with a sampling interval of 1 point per second.

TOF calculation: The electrochemical active surface area (ECSA) is calculated using the following equation:

$$ECSA = C_{dl} / C_s$$
$$TOF = (j \times 3.12 \times 10^{15}) / (surface sites \times ECSA)$$

Where C_{dl} is the electrochemical double-layer capacitance, C_s is specific capacitance, j is current density during the LSV measurement in 0.1 M KOH.

Fig. S1. SEM images of (a,b) PtO₂-Ni(OH)₂ NA/CC and (c,d) Ni(OH)₂ NA/CC.

Fig. S2. EDX spectrum for PtNi-Ni NA/CC.

Fig. S3. SEM image of bare CC.

Fig. S4. Cross-section SEM image of PtNi-Ni NA/CC.

Fig. S5. SEM images of Ni NA/CC.

Catalyst	j (mA cm ⁻²)	η (mV)	Pt content (wt%)	Electrolyte	Refs.
PtNi-Ni NA/CC	5	21	7.7	0.1 M KOH	This
	10	38			work
Pt ₃ Ni ₃ NWs/C	10	45	76.9	0.1 M KOH	2
Pt ₃ Ni frames/Ni(OH) ₂ /C	5	63	20	0.1 M KOH	3
hcp-Pt-Ni	10	66	39.6	0.1 M KOH	4
Ni ₃ N/Pt	10	50	15	1.0 M KOH	5
Pt ₃ Ni ₂ NWs-S/C	10	45	81.6	0.1 M KOH	6
Pt-Ni/C	10	68	25	0.1 M KOH	7
Pt ₁₃ Cu ₇₃ Ni ₁₄ /CNF@CF	10	67	1.8	1.0 M KOH	8
PtNi alloy nanohexapod	5	22	18.1	0.1 M KOH	9
$Ru_1@Pt_{1.0}(2ML)$	10	129	59.7	1.0 M KOH	10
Pt NWs/SL-Ni(OH) ₂	10	48	38	0.1 M KOH	11
Ni(OH) ₂ /Pt-islands/Pt(111) surface	10	138	Pt electrode	0.1 M KOH	12
Pt(111)-Co(OH) ₂	3	196	Pt electrode	0.1 M KOH/LiOH	13

Table S1. Comparison of HER performance for PtNi-Ni NA/CC with other Pt-based
 electrocatalysts in alkaline electrolytes.

Fig. S6. SEM images of (a,b) PtNi/CC and (c,d) PtNi-Ni/CC.

Fig. S7. Cyclic voltammograms for (a) PtNi-Ni NA/CC, (b) PtNi-Ni/CC, and (c) PtNi/CC. (d) The capacitive current densities at 0.815 V as a function of scan rate for PtNi-Ni NA/CC, PtNi-Ni/CC, and PtNi/CC.

References

- L. Zou, J. Fan, Y. Zhou, C. Wang, J. Li, Z. Zou and H. Yang, *Nano Res.*, 2015, 8, 2777–2788.
- P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, *Angew. Chem., Int. Ed.*, 2016, 55, 12859–12863.
- C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. Xin, J. D. Snyder, D. Li, J.
 A. Herron, M. Mavrikakis, M. Chi. K. L. More, Y. Li, N. M. Markovic, G. A.
 Somorjai, P. Yang and V. R. Stamekovic, *Science*, 2014, 343, 1339–1343.
- Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. Lu, Z. Xie and
 L. Zheng, *Nat. Commun.*, 2017, 8, 15131.
- 5 Y. Wang, L. Chen, X. Yu, Y. Wang and G. Zheng, *Adv. Energy Mater.*, 2017,
 7, 1601390.
- 6 P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao and X. Huang, *Nat. Commun.*, 2017, 8, 14580.
- R. Kavian, S. I. Choi, J. Park, T. Liu, H. C. Peng, N. Lu, J. Wang, M. J. Kim,
 Y. Xia and S. W. Lee, *J. Mater. Chem. A*, 2016, 4, 12392–12397.
- Y. Shen, A. C. Lua, J. Xi and X. Qiu, ACS Appl. Mater. Interfaces, 2016, 8, 3464–3472.
- 9 A. Oh, Y. J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S. H. Joo and K. Lee, *Nanoscale*, 2016, 8, 16379–16386.
- K. Elbert, J. Hu, Z. Ma, Y. Zhang, G. Chen, W. An, P. Liu, H. S. Isaacs, R. R.
 Adzic and J. X. Wang, ACS Catal., 2015, 5, 6764–6772.
- 11 H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao and Z. Tang, *Nat. Commun.*, 2015, 6, 6430.
- R. Subbaraman, D. Tripkovic, D. Strmenik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic and N. M. Markovic, *Science*, 2011, 334, 1256-1260.
- 13 R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. P. Greeley, V. R. Stamenkovic and N. M. Markovic, *Nat. Mater.*, 2012, **11**, 550–557.