Supplementary Information

Ni₃[Fe(CN)₆]₂ nanocubes boost the catalytic activity of Pt towards

electrochemical hydrogen evolution

Xiao Zhang,^a Pei Liu,^a Yanfang Sun,^b Tianrong Zhan,^a Qingyun Liu,^c Lin Tang,^a Jinxue Guo^{a,*} and Yongyao Xia^d

^a State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular

Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

^bCollege of Science and Technology, Agricultural University of Hebei, Cangzhou 061100, China

^cCollege of Chemical and Environmental Engineering, Shandong University of Science and

Technology, Qingdao 266510, China

^dDepartment of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative

Materials, Institute of New Energy, iChEM(Collaborative Innovation Center of Chemistry for Energy

Materials), Fudan University, Shanghai 200433, China

*Corresponding author. E-mail: gjx1213@126.com (J. Guo)

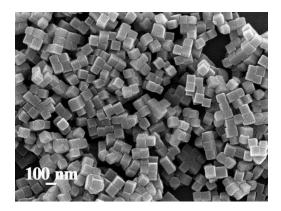


Fig. S1 SEM image of $Ni_3[Fe(CN)_6]_2$ nanocubes.

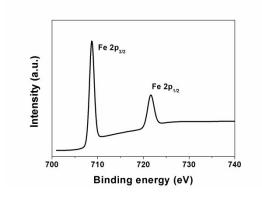


Fig. S2 The Fe 2p XPS spectrum of Ni_3 [Fe(CN)₆]₂/Pt. The Fe 2p_{3/2} peak at 708.7 eV and Fe 2p_{1/2} peak

at 721.6 eV show that, most of Fe content is oxidation state of Fe (II) or Fe (III).^{1,2}

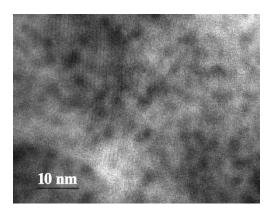


Fig. S3 TEM image of Ni_3 [Fe(CN)₆]₂/Pt catalyst after durability experiment in H₂SO₄.

References

- 1. Y. Ji, Y. Wu, G. Zhao, D. Wang, L. Liu, W. He and Y. Li, *Nano Res.*, 2015, **8**, 2706-2713.
- Q. Wang, S. Chen, F. Shi, Y. Nie, Y. Wang, R. Wu, J. Li, Y. Zhang, W. Ding, Y. Li, L. Li and Z. Wei, *Adv. Mater.*, 2016, 28, 10673-10678.