Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Comprehensive Studies on Phosphoric Acid Treatment of Porous Titania

toward Titanium Phosphate and Pyrophosphate Monoliths

with Pore Hierarchy and Nanostructured Pore Surface

By Yang Zhu, George Hasegawa, * Kazuyoshi Kanamori and Kazuki Nakanishi

Figure S1 (a) SEM images and (b) N_2 adsorption-desorption isotherms as well as the corresponding mesopore size distributions of the macropore surfaces for the samples treated in 0.1 M H₃PO₄ aq. at 60 °C for varied treating time.

Figure S2 (a) SEM images, (b) FT-IR spectra and (c) N_2 adsorption-desorption isotherms as well as the corresponding mesopore size distributions of the macropore surfaces for the samples treated in 0.1 M H₃PO₄ aq. at different temperatures for 24 h. No wrinkled objects were observed when the temperature was 150 °C. The treatment at 180 °C gave the same result.

Figure S3 Change in microscopic morphologies of the titania monoliths treated in 1 M H_3PO_4 aq. at 60 °C for 24 h through the calcination at different temperatures. The winkled texture on the macropore surface was vanished after the calcination above 800 °C.

Figure S4 XRD patterns of the titania monoliths treated in 1 M H_3PO_4 aq. at 60 °C for 24 h before and after the calcination at different temperatures.

Figure S5 N_2 adsorption-desorption isotherms and the corresponding mesopore size distributions of the titania monoliths treated in 1 M H₃PO₄ aq. at 60 °C for 24 h before and after the calcination at different temperatures.

Figure S6 XRD patterns of the samples treated in different concentrations of H_3PO_4 aq. at 80 °C for 4 h. Before heating, each sample was immersed in the corresponding H_3PO_4 aq. at room temperature for 12 h.

Figure S7 N_2 adsorption-desorption isotherms and mesopore size distributions of the samples treated in different concentrations of H_3PO_4 aq. at 80 °C for 4 h.

Figure S8 Change in microscopic morphologies of the samples treated in 12 M H_3PO_4 aq. at 80 °C for 4 h through the calcination at different temperatures.

Figure S9 Change in microscopic morphologies of the samples treated in 14.6 M H₃PO₄ aq. at 80

°C for 4 h through the calcination at different temperatures.

Figure S10 XRD patterns of the calcined samples obtained by calcining the phosphated titania monoliths treated in high concentrations of H_3PO_4 aq. at 80 °C for 4 h through the calcination at different temperatures: (a) 12 M and (b) 14.6 M.

Figure S11 XRD patterns of the calcined samples obtained by calcining the phosphated titania monoliths treated under different hydrothermal conditions at different temperatures: $0.8 \text{ M H}_3\text{PO}_4$ aq. at 150 °C for 24 h and 2 M H₃PO₄ aq. at 180 °C for 72 h.

Figure S12 Change in microscopic morphologies of the samples treated in 0.8 M H_3PO_4 aq. at 150 °C for 24 h through the calcination at different temperatures.

Figure S13 Change in microscopic morphologies of the samples treated in 2 M H_3PO_4 aq. at 180

°C for 72 h through the calcination at different temperatures.

Figure S14 Flexural stress–strain curves for the representative α -TiP and TiP₂O₇ monoliths by a short-beam three-point bending test.

conditions measured by N ₂ physisorption.					
$C_{\rm phosphoric\ acid}{}^a$	$T_{\rm phosphoric\ acid}{}^b$	$t_{\rm phosphoric \ acid}^{c}$	$S_{\rm BET}{}^d$	V _{micro-meso} ^e	$D_{p}{}^{f}$
/M	/°C	/h	$/m^2 g^{-1}$	$/{\rm cm}^3 {\rm g}^{-1}$	/nm
_	_	—	245	0.24	4.8
0.1	60	24	254	0.53	11
0.1	60	72	250	0.46	11
0.1	60	168	226	0.43	11
0.1	80	24	249	0.49	11
0.1	100	24	208	0.40	9.2
0.1	120	24	188	0.36	9.2
0.1	150	24	223	0.38	11
0.8	150	24	86	0.37	_
1	60	24	233	0.61	16
2	180	72	31	0.16	_
3	60	24	199	0.53	18
4	60	24	139	0.53	44
10	80	4	153	0.62	28
12	80	4	82	0.47	44
14.6	80	4	22	0.16	_

Table S1 Summary of pore characteristics of the samples treated in H₃PO₄ aq. under different

^{*a*} Concentration of H₃PO₄ aq. ^{*b*} Treatment temperature. ^{*c*} Reaction time. ^{*d*} Specific surface area obtained by the BET method. ^{*e*} Micro- and mesopore volume obtained from the nitrogen adsorption isotherms at $p/p_0 = 0.99$. ^{*f*} Mean mesopore diameter obtained by the BJH method.