Electronic Supplementary Information

Thiacalix[4]arene-supported Tetradecanuclear Cobalt Nanocage Cluster as Precursor to Synthesize CoO/Co₉S₈@CN Composite for Supercapacitor Application

Cheng Shi,^{‡a} Mengwei Chen,^{‡a} Xu Han,^a Yanfeng Bi,^{*a} Liangliang Huang, ^a Kun Zhou,^a and Zhiping Zheng^{*ab}

^aCollege of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun

113001, P. R. China.

^b University of Arizona, Department of Chemistry, Tucson AZ 85721, USA

Scheme S1 *p*-*tert*-Butylthiacalix[4]arene(H₄TC4A).

Comparison of XRD patterns for compound **1** (black line as experimented) is accordant with the simulated one (red one) derived from the single crystal X-ray data, confirming the pure phase of the samples of Co_{14} clusters.

Magnetic measurements

Fig. S2 Plots of $\chi_m T$ vs. T and χ_m^{-1} vs. T for compound 1 in a 1 kOe field.

Magnetic susceptibility measurements were carried out on fresh samples of compound at 2-300 K with a 1000 Oe applied field. The plots of $\chi_m T$ vs. T and χ_m^{-1} vs. T showed that the $\chi_m T$ value decreases gradually from 41.53 cm³ mol⁻¹ K at 300 K to 3.55 cm³ mol⁻¹ K at 2 K. The magnetic property of this compound can be attributed to fourteen octahedrally coordinated Co^{II} cations. For each Co^{II} center, the experimental $\chi_m T$ value at room temperature is 2.97 cm³ mol⁻¹ K, which is accord with the typical value of the Co^{II} ion (for Co^{II}, the $\chi_m T$ value normally ranges from 2.7 to 3.4 cm³ mol⁻¹ K). For this complex, fitting the experimental data in the range of 50~300 K to the Curie–Weiss law $1/\chi_m = (T - \theta)/C$ gives Curie constants (C) of 46.27 cm³ mol⁻¹ K and Weiss constants (θ) of -34.29 K. The negative Weiss constants (θ) suggest antiferromagnetic interactions between the cobalt (II) centers.

TGA-DSC analyses of compound 1

Fig. S3 TGA/DSC curves of compound 1 (in N₂).

TGA analysis on compound **1** indicates that the onset of the solvent loss is at the beginning of recording and the weight decreases sharply to 180 °C which can be ascribed to the release of the solvent molecules and coordinated H_2O . The observed weight loss of 27.2% is close to the calculated value (27.4%). Further weight loss takes place without showing any distinct plateau before 370 °C and then the compound began to decompose completely, reaching a relative stable weight at high temperature.

Fig. S4 The XRD of the final decomposition of TGA.

Fig. S5 The EDS element mapping of the nanocomposites

Fig. S6 The Raman spectra of CoO/Co₉S₈@CN

Fig. S7 Nyquist plots before and after 1000 cycles of CoO/Co₉S₈@CN/NF

The impedance measurements were applied for the NF-supported CoO/Co₉S₈@CN in range of 100 kHz -0.01 Hz. The Nyquist plots before and after 1000 cycles are composed of a depressed semicircle in the high frequency region and a almost straight line in the low frequency, which is characteristic of capacitive behavior and representative of ion diffusion in the electrode. The fitted charge transfer impedance (Rct) and the total resistance of solution resistance between the working electrode and the reference electrode (Rs) did not show any essential difference indicating the good stabilities of the fabricated CoO/Co₉S₈@CN/NF for supercapacitors.

Formula	$C_{180}H_{287}Cl_3Co_{14}N_{62}O_{43}S_{12}$	
Mr	5323.79	
Crystal system	Hexagonal	
space group	<i>P</i> 6 ₃ / <i>m</i> (No.176)	
Temperature (K)	150	
<i>a</i> (Å)	26.6695 (5)	
b(Å)	26.6695 (5)	
$c(\text{\AA})$	21.9235 (5)	
α(°)	90	
β(°)	90	
γ(°)	120	
Volume(Å ³)	13504.2 (6)	
Ζ	2	
$D_{\rm c}({\rm g/cm^3})$	1.196	
$\mu(\text{mm}^{-1})$	1.020	
Reflections collected	95276	
Unique data(R_{int})	8190	
GOF on F^2	1.07	
R_1 [I>2sigma(I)]	0.0745	
wR_2	0.2467	

 Table S1 Crystal Data and Structural Refinement Parameters for 1

 ${}^{a}R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|; {}^{b}wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$

Co(1)-O(1)	1.994(3)	Co(3)-O(4)	2.092(6)	
Co(1)-O(2)#1	2.028(4)	Co(3)-O(4)#3	2.092(6)	
Co(1)-N(1)	2.049(5)	Co(3)-O(4)#4	2.092(5)	
Co(1)-N(5)	2.142(5)	Co(3)-N(8)	2.135(6)	
Co(1)-S(1))#1	2.4707(17)	Co(3)-N(8)#3	2.135(6)	
Co(1)-Cl(1)	2.702(1)	Co(3)-N(8)#4	2.135(6)	
Co(2)-O(3)	1.994(3)			
Co(2)-O(2)	2.032(4)			
Co(2)-N(3)#2	2.039(7)			
Co(2)-N(6)#1	2.150(5)			
Co(2)-S(2)	2.4786(16)			
Co(2)-Cl(1)	2.682(1)			

Table S1 Selected bond lengths (Å) of 1

#1: x,y,-z+3/2 , #2:1-y,x-y,3/2-z, #3: 1-y,x-y,z, #4:1-x+y,1-x,z