Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

## Supporting information

## Cube-Like CuCoO Nanostructures on Reduced Graphene Oxide for H<sub>2</sub> Generation from Ammonia Borane

Hechuang Zheng, Kun Feng, Yunpeng Shang, Zhenhui Kang \*, Xuhui Sun, and Jun

Zhong\*



Figure S1: The particle size distribution of  $Cu_{0.5}Co_{0.5}O$ -rGO with an average size of 30.9 nm.



**Figure S2:** TEM image of the Cu<sub>0.5</sub>Co<sub>0.5</sub>O-rGO sample.



Figure S3: XAS spectra of rGO, CuO-rGO and CoO-rGO samples at C *K*-edge.



Figure S4: Hydrogen evolution curves of the hydrolysis of AB aqueous solution catalyzed by  $Cu_{0.5}Co_{0.5}O$ -rGO,  $Cu_{0.5}Ni_{0.5}O$ -rGO and  $Co_{0.5}Ni_{0.5}O$ -rGO samples.



**Figure S5:** Stability test of  $Cu_{0.5}Co_{0.5}O$ -rGO in 6 runs for the hydrolysis of AB. The TOF value decreases from 81.7 to 72.1 (the 6<sup>th</sup> cycle, 88.3% left).



**Figure S6:** Hydrogen-generating rate as a function of temperature in the hydrolysis of AB catalyzed by  $Cu_{0.5}Co_{0.5}O$ -rGO. Since at a high temperature the reaction will be finished very quickly, we have used less  $Cu_{0.5}Co_{0.5}O$ -rGO (2.6 mg) in this reaction. Inset: Arrhenius plot of In(TOF) versus 1/*T*. The activation energy is 45.26 kJ/mol.



**Figure S7:** XAS spectra of  $Cu_{0.5}Co_{0.5}O$ -rGO and the reference samples at C *K*-edge (a); Cu *L*-edge (b); and Co *L*-edge (c).



**Figure S8:** XPS spectra of  $Cu_{0.5}Co_{0.5}O$ -rGO at C 1s (a), Cu 2p (b) and Co 2p (c) edges, respectively.



Figure S9: *In-situ* XAS cell with bubbles observed in the hydrolysis process.



**Figure S10:** XAS spectra of  $Cu_{0.5}Co_{0.5}O$ -rGO before and after the reaction at O *K*-edge.



**Figure S11:** Stability test of  $Cu_{0.5}Co_{0.5}O$ -rGO after 9 runs. The TOF value slightly decreases from 81.7 to 72.1 in the 6<sup>th</sup> cycle (88.3% left), while sharply decreases to 43.5 in the 10<sup>th</sup> cycle (53.2% left).



**Figure S12:** TEM images of the  $Cu_{0.5}Co_{0.5}O$ -rGO samples in the first cycle (a), the 6<sup>th</sup> cycle (b), and the 10<sup>th</sup> cycle (c).

| Samples                                   | Cu-loading/wt% | Co-loading/wt% | TOF (H <sub>2</sub> ) mol/(Cat-<br>M)mol·min |
|-------------------------------------------|----------------|----------------|----------------------------------------------|
| Cu <sub>0.9</sub> Co <sub>0.1</sub> O-rGO | 21.0           | 1.8            | 57.8                                         |
| Cu <sub>0.7</sub> Co <sub>0.3</sub> O-rGO | 16.1           | 5.7            | 59.6                                         |
| Cu <sub>0.5</sub> Co <sub>0.5</sub> O-rGO | 11.7           | 10.0           | 81.7                                         |
| Cu <sub>0.3</sub> Co <sub>0.7</sub> O-rGO | 7.2            | 10.0           | 64.4                                         |
| Cu <sub>0.1</sub> Co <sub>0.9</sub> O-rGO | 2.7            | 14.3           | 34.0                                         |
| CuO-rGO                                   | 15.2           | -              | 7.5                                          |
| CoO-rGO                                   | -              | 13.2           | 17.2                                         |
| rGO                                       | -              | -              | 0                                            |

**Table S1.** Cu and Co contents and the TOF values of various  $Cu_xCo_{1-x}O$ -rGO samples.

| Catalyst                                                           | TOF (H <sub>2</sub> ) mol/(Cat-<br>M)mol·min | Solution | T (°C) | Ref.      |
|--------------------------------------------------------------------|----------------------------------------------|----------|--------|-----------|
| Cu <sub>0.5</sub> Co <sub>0.5</sub> O-rGO cube                     | 81.7                                         | Water    | 25     | This work |
| Ni <sub>0.3</sub> Co <sub>1.3</sub> P/GO                           | 109.4                                        | NaOH     | 25     | 1         |
| Ni/ZIF-8                                                           | 85.7                                         | NaOH     | 25     | 2         |
| СоР                                                                | 72.2                                         | NaOH     | 25     | 3         |
| Cu <sub>0.8</sub> Co <sub>0.2</sub> O-GO                           | 70.0                                         | Water    | 25     | 4         |
| CuO-NiO                                                            | 60.0                                         | Water    | 25     | 5         |
| Cu <sub>0.5</sub> Ni <sub>0.5</sub> /CMK-1                         | 54.8                                         | Water    | 25     | 6         |
| CuCo/MIL-101-1-U                                                   | 51.7                                         | Water    | 25     | 7         |
| Co NPs (in-situ)                                                   | 49.8                                         | Water    | 25     | 8         |
| Ni NPs@3D-(N)GFs                                                   | 41.7                                         | Water    | 25     | 9         |
| Ni <sub>2</sub> P                                                  | 40.4                                         | Water    | 25     | 10        |
| Cu NPs@SCF                                                         | 40.0                                         | Water    | 25     | 11        |
| PEI-GO/Co                                                          | 39.9                                         | Water    | 25     | 12        |
| Ni@MCS-30                                                          | 30.7                                         | Water    | 25     | 13        |
| Cu <sub>0.49</sub> Co <sub>0.51</sub> /C                           | 28.7                                         | Water    | 25     | 14        |
| Ni/CNT                                                             | 26.2                                         | Water    | 25     | 15        |
| Ni NPs/CNT                                                         | 23.5                                         | Water    | 25     | 16        |
| Cu <sub>0.1</sub> @Co <sub>0.45</sub> Ni <sub>0.45</sub> /graphene | 15.46                                        | Water    | 25     | 17        |
| Ni NPs/C                                                           | 8.8                                          | Water    | 25     | 18        |
| Pt/C                                                               | 111.0                                        | Water    | 25     | 19        |
| Pt black                                                           | 14.0                                         | Water    | 25     | 19        |

**Table S2.** TOF values reported in the literatures. The red color indicates the TOF values obtained in a NaOH solution instead of pure water.

References listed in Table S1:

- 1. C.C. Hou, Q. Li, C. J. Wang, C. Y. Peng, Q. Q. Chen, H. F. Ye, W. F. Fu, C. M. Che, N. López, Y. Chen, *Energy Environ. Sci.* **2017**, *10*, 1770-1776.
- C. Wang, J. Tuninetti, Z. Wang, C. Zhang, R. Ciganda, L. Salmon, S. Moya, J. Ruiz, D. Astruc, J. Am. Chem. Soc. 2017, 139, 11610-11615.
- Z. C. Fu, Y. Xu, S. L. Chan, W. W. Wang, F. Li, F. Liang, Y. Chen, Z. S. Lin, W. F. Fu, C. M. Che, *Chem. Commun.* 2017, *53*, 705-708.
- K. Feng, J. Zhong, B. Zhao, H. Zhang, L. Xu, X. Sun, S. T. Lee, *Angew. Chem. Int.* Ed. 2016, 128, 12129-12133.
- 5. H. Yen, F. Kleitz, J. Mater. Chem. A 2013, 1, 14790-14796.
- 6. H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, ACS Catal. 2015, 5, 5505-5511.
- P. Liu, X. Gu, K. Kang, H. Zhang, J. Chen, H. Su, ACS Appl. Mater. Interfaces 2017, 9, 10759.
- J. M. Yan, X. B. Zhang, H. Shioyama, Q. Xu, J. Power Sources 2010, 195, 1091-1094.
- 9. M. Mahyari, A. Shaabani, J. Mater. Chem. A 2014, 2, 16652-16659.
- C. Y. Peng, L. Kang, S. Cao, Y. Chen, Z. S. Lin, W. F. Fu, *Angew. Chem. Int. Ed.* 2015, 54, 15725-15729.
- 11. M. Kaya, M. Zahmakiran, S. Özkar, M. Volkan, ACS Appl. Mater. Interfaces 2012, 4, 3866-3873.
- 12. J. T. Hu, Z. X. Chen, M. X. Li, X. H. Zhou, H. B. Lu, ACS Appl. Mater. Interfaces 2014, 6, 13191-13200.
- 13. P. Z. Li, A. Aijaz, Q. Xu, Angew. Chem. Int. Ed. 2012, 51, 6753-6756.
- 14. A. Bulut, M. Yurderi, I. E. Ertas, M. Celebi, M. Kaya, M. Zahmakiran, *Appl Catal B-Environ* **2016**, *180*, 121-129.
- 15. J. K. Zhang, C. Q. Chen, W. J. Yan, F. F. Duan, B. Zhang, Z. Gao, Y. Qin, *Catal. Sci. Technol.* **2016**, *6*, 2112-2119.
- 16. G. Q. Zhao, J. Zhong, J. Wang, T. K. Sham, X. H. Sun, S. T. Lee, *Nanoscale* **2015**, 7, 9715-9722.
- 17. X. Y. Meng, L. Yang, N. Cao, C. Du, K. Hu, J. Su, W. Luo, G. Z. Cheng, *ChemPlusChem* **2014**, *79*, 325-332.
- 18. Ö. Metin, V. Mazumder, S. Özkar, S. H. Sun, J. Am. Chem. Soc. 2010, 132, 1468-1469.

| Cycles          | TOF (H <sub>2</sub> ) mol/(Cat-<br>M)mol·min | Catalytic Efficiency |  |  |
|-----------------|----------------------------------------------|----------------------|--|--|
| 1 st            | 81.7                                         | 100%                 |  |  |
| 2 <sup>nd</sup> | 76.6                                         | 93.8%                |  |  |
| 3 <sup>rd</sup> | 76.6                                         | 93.8%                |  |  |
| 4 <sup>th</sup> | 73.2                                         | 89.6%                |  |  |
| 5 <sup>th</sup> | 72.1                                         | 88.3%                |  |  |
| 6 <sup>th</sup> | 72.1                                         | 88.3%                |  |  |

**Table S3.** TOF values and the catalytic efficiencies of  $Cu_{0.5}Co_{0.5}O$ -rGO in different cycles during the stability test.