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Fig. S1 Structure illustration of CoBDC (a) and PXRD pattern of the as synthesized 2D CoBDC
nanoplates (b). The structure figure of isostructural CuBDC and PXRD pattern of CoBDC (inset
of'b) are reproduced from the original reference with permission (T. Rodenas, 1. Luz, G. Prieto,
B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. LlabrésiXamena and J. Gascon, Nat. Mater.,
2014, 14, 48.).
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Fig. S2. SEM image of CoBDC nanoplates

Fig. S3. SEM images of (a) bulk-type CoBDC (b) bulk-type Co30,.
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Fig. S4. XPS spectra of C;04 nanosheets: (a) Co 2p; (b) O 1s.
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Fig. S5. Nitrogen sorption-desorption isotherms of Co;04 nanosheets.
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Fig. S6. The cycle performance of KB at 100 mA g'.
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Fig. S7 (a) The SEM image of Co;0; at calcination temperature of 600 °C. (b) The SEM

image of Co;0y, at calcination temperature of 700 °C. (¢) Cycling performance of Co;04

electrode synthesized at different temperature at current densities of 1A-g!.
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Fig. S8. (a) CV profiles of bulk-type Cos;O4 at a scanning rate of 0.1 mV-s™'. (b)
Discharge—charge curves of bulk-type Co3;0, (c) Cycling performance of bulk-type Co30,

electrode at current densities of 100 mA-g-'.
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Fig. S9. Nyquist plots for Co;O4 nanosheets and bulk-type Co;0,.
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Fig. S10. EIS of the fresh, discharged and charged cells (a), the equivalent circuit (b), and the
detailed resistance of each part (c). The measurement is performed by applying a sine wave
with amplitude of 5.0 mV with frequency range of 100 kHz—0.1 Hz, and the Nyquist plots are
fitted with ZView software. For the equivalent circuit, R, denotes the electrolyte resistance, Ry
represent the resistance of the SEI films, R, is the charge-transfer resistance and W; denotes

the Warburg impedance.
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Table S1. Comparison of LIBs performances of different Co;04-based anodes.

. Cycling N
Electrode materials Rate capability References
performance
1477mAh g!
at 100 mA g! 886 mAh g'at2 A g! )
Co;04nanosheets This work
775mAh g 539mAh g'at 10 A g!
at 1A g1
1033 mAh g! 859 mAhg'at 1A g,
Co;04nanostructure 8 gﬁ e £ 1
at 100 mA g! 758 mAhg'at2 A g'!
Graphene-embedded 1110.8 mAh g! 913.8 mAh g'at0.2 C, 5
Co304 rose-spheres | at 90 mA g! (0.1 C) 462.3 mAhg!'at2 C
Co;04holl
0310 TOW 1281mAhg'at | 715mAhgat1A g,
nanoparticles and - i 3
0.1Ag™! 643 mAhg'at2 A g'!
carbon nanotubes
1279.2 mAh g' at
Co;0,4 nanofoils £ a Unavailable 4
90 mA g' (0.1 C)
MesoporousCo;O4na | 1200 mA h g-!' at 100 .
. Unavailable 5
nowires mA g!
MWCNTSs/Co;04nan 813 mAh g! at
_ 514mAhglatl Ag! 6
ocomposites 100 mA g!
Hollow 1115 mAh g! at
, 738 mAh g'latl A g! 7
Co;0yparallelepipeds 100 mA g!
Co;0, hollow 780 mAh g'! at 600 holat9 Ao g
~ I[l A = a =
dodecahedra 100 mA g! 8 8
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