Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Electronic Supplementary Information

One-Pot synthesis polyoxomolybdates anionic intercalated layered double hydroxides and their application in ultra-deep desulfurization of fuels at mild condition

Yu Guo,^a Jiawei Fu,^a Li Li,^a Xiaonan Li,^a Haiyu Wang,^a Wenwen Ma^{*b} and Hong Zhang^{*a}

^a Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University,

Changchun, Jilin 130024, P. R. China

^b College of chemistry and chemical engineering, College of chemistry and chemical engineering,

Shenyang Normal University, Shenyang, Liaoning 110034, P.R. China.

Fax: +86-0431-85098827; Tel: +86-0431-85099372; E-mail: hope20130122@163.com,

zhangh@nenu.edu.cn

Single-cryatal X-ray diffraction data for compounds using an Oxford Diffraction Gemini R Ultra diffractometer with graphite-monochromated Mo-K*a* radiation ($\lambda = 0.71073$ Å) by using ω -scan technique. The structure were solved and refined by full-matrix least squares on F2 using the SHELXL-2017 program.¹ Hydrogen atoms on C and N atoms using the theory of hydrogenation method and refined using the O-H distance restrained to a target value of 0.85Å. The entry of CCDC–1830449 contains the supplementary crystallographic data for the compounds. H atoms are omitted for clarity.

Fig.S1 The crystal structure of the $[(n-C_4H_9)_4N]_2[Mo_6O_{19}]$.

Mo(1)-O(16)	1.680(5)
Mo(2)-O(15)	1.679(4)
Mo(3)-O(19)	1.689(5)
Mo(4)-O(8)	1.917(4)
Mo(5)-O(17)	1.924(5)
Mo(6)-O(18)	1.688(5)
N(1)-C(16)	1.513(9)
N(2)-C(43)	1.516(10)

 $\label{eq:constant} \textbf{Table.S1} \ The \ crystal \ bond \ length \ of \ the \ [(n-C_4H_9)_4N]_2[Mo_6O_{19}].$

Table.S2 The crystal bond angle of $[(n-C_4H_9)_4N]_2[Mo_6O_{19}]$.

O(16)-Mo(1)-O(6)	103.8(3)
O(15)-Mo(2)-O(12)	103.6(2)
O(11)-Mo(3)-O(14)	153.5(2)
O(8)-Mo(4)-O(7)	87.5(2)
O(17)-Mo(5)-O(6)	153.7(2)
O(14)-Mo(6)-O(2)	76.38(16)
Mo(3)-O(2)-Mo(6)	90.44(13)
Mo(5)-O(2)-Mo(4)	89.57(12)
Mo(4)-O(1)-Mo(5)	116.0(2)
C(5)-N(2)-C(10)	105.6(5)
C(8)-C(5)-N(2)	116.2(6)

Table.S3 The BET surface areas $\$ pore volume and pore size of theMg₃Al-Mo₆ catalyst. ^a The atomic ratio of Mgand Al was determind by ICP measurement.

Catalyst	Mg:Al ^a	S_{BET}/m^2g^{-1}	Pore volume (cm ³ g ⁻¹)	Pore size/nm
Mg ₃ Al-Mo ₆	0.77:0.23	77.45	0.092	4.79

Fig.S2 XRD patterns of the recyclable Mg₃Al-Mo₆ heterogeneous catalyst.

(c). 4,6-DMDBT

Fig.S3 Spatial structures of different sulfur-containing compounds. (a).BT, (b)DBT and (c)4,6-DMDBT.

Catalyst	n(O/S)	Sulfur removal %
HPW-CeO ₂	6	96.1 ²
HPW-TUD-1	8	98.1 ³
Ti-MSM	10	99.8 ⁴
Mg ₃ Al-IL-EuW ₁₀	8	1005
FePcCl ₁₆	40	100 ⁶
$Na_7H_2LnW_{10}O_{36} \cdot 32H_2O$	5	1007

Table.S4 The removal of DBT in various ODS systems with different n(O/S)

1. L. Peterson, J. Kelley, L. Peterson, M. D.Smith and H. C. Zur Loye, *J. Appl. Crystallography.*, 2009, *65* (4), 364-365.

2. M. Zhang, W. Zhu, S. Xun, H. Li, Q. Gu, Z. Zhao and Q. Wang, *Chem. Eng. J.*, 2013, **220** (6), 328-336.

3. L. Tang, G. Luo, M. Zhu, L. Kang, B. Dai, J. Ind. Eng. Chem., 2013, **19** (2), 620-626.

4. A. T. Shah, B. Li, Z. E. Abdalla, J Colloid Interf. Sci., 2009, 336 (2), 707-711.

5. Y. Xu, W. Xuan, M. Zhang, H. N. Miras, Y. F. Song, *Dalton.T*, 2016, **45** (48), 19511-19518.

6. H. Liu, S. Bao, Z. Cai, T. Xu, N. Li, L. Wang, H. Chen, W. Lu, W. Chen, *Chem. Eng. J.*, 2017, **317**, 1092-1098.

7. J. Xu, S. Zhao, W. Chen, M. Wang, Y. F. Song, Chem., 2012, 18 (15), 4775-81.