Structure Transformation in $Ca_{1-x-\delta}Sr_{\delta}La_{x}Ag_{1-y}Sb$ ($0 \le \delta \le 0.7$) and

Related Thermoelectric Properties

Jia Guo, Min Zhu, Xin Li, Xu-Tang Tao, and Sheng-Qing Xia*

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China

Supporting Information

Contents

- 1. EDS analyses on the compositions of single crystal of $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb$.
- 2. Table S1. Selected crystal data and structure refinement parameters for $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb$.
- 3. **Table S2.** Refined atomic coordinates and isotropic displacement parameters for Ca_{0.16(2)}Sr _{0.77(3)}La_{0.07(1)}Ag _{0.931(3)}Sb.
- Table S4. Unit cell parameters refined from the powder diffraction patterns of Ca_{1-x-δ}Sr_δLa_xAg_{0.89}Sb with various compositions.
- Figure S1. Powder X-ray diffraction patterns for Ca_{0.85}La_{0.15}Ag_{1-y}Sb (y = 0.11, 0.13, 0.15) materials.
- 7. **Figure S2.** Components of the electronic (a) and lattice thermal conductivity (b) for materials $Ca_{0.85}La_{0.15}Ag_{1-y}Sb$ (y = 0.11, 0.13, 0.15).
- 8. **Figure S3.** Powder X-ray diffraction patterns of material Ca_{0.85}La_{0.15}Ag_{0.90}Sb. The theoretical predictions of Ca_{0.85}La_{0.15}Ag_{0.85}Sb and Ag were provided for comparison as well.
- 9. Figure S4. [AgSb] anionic framework structure of $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb$ viewed along the *b*-axis. The long interlayered Ag-Sb distances (4.15 and 4.24 Å) as well as the almost planar [AgSb] net (inplane Ag–Sb–Ag angle: 119.9°) both suggest high similarity to the SrAgSb structure, which evidently suggest the structure transformation of $Ca_{1-x-\delta}Sr_{\delta}La_xAg_{1-y}Sb$ from the LiGaGe type towards the ZrBeSi type.
- 10. **Figure S5.** Temperature dependence of the heat capacity of materials $Ca_{1.} \delta Sr_{\delta}La_{0.15}Ag_{0.89}Sb$ (δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7).
- 11. **Figure S6.** Band gaps (a) evaluated by the peaks of Seebeck coefficient measurements and corresponding effective mass (b) with various Sr contents.
- 12. **Figure S7.** Electronic band structures calculated for hypothetical LiGaGe-type Ca_{1-x}La_xAg_ySb (left) and ZrBeSi-type SrAgSb (right).
- 13. Figure S8. Partial density of states (DOS) for ZrBeSi-type SrAgSb.

@	ST Ag		¢ ¢ ¢		Spec	um 3	
D 1 Full Scale 2	2 2112 cts Curs	3 4 or: 0.000	5 6	5 7	8	9	10 keV
Element	Weight%	Atomic%	Compositie	on			
Са	2.62	6.86	0.20				

0.67

0.13

0.87

1

Sr

Ag

Sb

La

19.45

31.39

40.58

5.95

23.25

30.48

34.92

4.49

EDS analyses on the compositions of single crystal of $Ca_{0.16(1)}Sr_{0.76(1)}La_{0.07}Ag_{0.931(3)}Sb$.

Formula	$Ca_{0.16(2)}Sr_{\ 0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb$			
$fw/g \cdot mol^{-1}$	305.67			
T / K	273(2)			
Radiation, wavelength	Mo-Ka, 0.71073 Å			
Space group, No.	P6(3)mc (No.186)			
Ζ	2			
Cell dimensions				
<i>a</i> / Å	4.7512(4)			
c/Å	8.3913(15)			
V/Å ³	164.05(4)			
$ ho_{calc}$ / g·cm ⁻³	6.188			
$\mu_{Mo\ Klpha}/\ { m cm}^{-1}$	2.693			
Final <i>R</i> indices ^a	<i>R1</i> = 0.0132			
$[I\!\!>\!\!2\sigma_{(I)}]$	wR2 = 0.0291			
Final <i>R</i> indices ^a	<i>R1</i> = 0.0143			
[all data]	wR2 = 0.0297			

Table S1. Selected crystal data and structure refinement parameters for $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb.$

^a $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|;$ $wR_2 = [\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]]^{1/2}$, and $w = 1/[\sigma^2 F_o^2 + (A \cdot P)^2 + B \cdot P]$, $P = (F_o^2 + 2F_c^2)/3$; A and B are weight coefficients.

Atoms	Wyckoff	<i>0CC</i> .	x	У	Ζ	$U_{eq}{}^{a}(A^{2})$
Ag	2b	0.931(3)	1/3	2/3	0.2465(5)	0.0230(5)
Sb	2b	1	1/3	2/3	0.7519(4)	0.0134(3)
La	2a	0.068(13)	0	0	0	0.0145(3)
Sr	2a	0.77(3)	0	0	0	0.0145(3)
Ca	2a	0.162(19)	0	0	0	0.0145(3)

Table S2. Refined atomic coordinates and isotropic displacement parameters for $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb.$

^{*a*} U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Atom pairs	Distances (Å)		
Sr/La/Ca –	$Sb \times 6$	3.434(2)	
	$Ag \times 2$	3.446(3)	
	$Ag \times 3$	3.461(3)	
Ag –	$Sb \times 3$	2.7435(3)	

 $\textbf{Table S3.} Important interatomic distances (Å) in Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb.$

$Ca_{1-x-\delta}Sr_{\delta}La_{x}Ag_{0.89}Sb$	a	b	c	αβγ
x=0.15, δ=0	4.703(1)Å	4.703 Å	7.792(2) Å	
x=0.15,δ=0.1	4.706(1) Å	4.706 Å	7.853(1) Å	
x=0.15,δ=0.2	4.708(1) Å	4.708 Å	7.935(1) Å	
x=0.15,δ=0.3	4.720(1) Å	4.720 Å	7.985(3) Å	α=90°
x=0.15,δ=0.4	4.730(2) Å	4.730 Å	8.070(4) Å	β=90°
x=0.15,δ=0.5	4.729(1) Å	4.729 Å	8.136(3) Å	γ=120°
x=0.15,δ=0.6	4.742(1) Å	4.742 Å	8.217(1) Å	
x=0.15,δ=0.7	4.749(2) Å	4.749 Å	8.299(7) Å	
x=0, δ=0.85	4.762(1) Å	4.762 Å	8.532(1) Å	

Table S4. Unit cell parameters refined from the powder diffraction patterns of $Ca_{1-x-\delta}Sr_{\delta}La_xAg_{0.89}Sb$ with various compositions.

Figure S1. Powder X-ray diffraction patterns for $Ca_{0.85}La_{0.15}Ag_{1-y}Sb$ (y = 0.11, 0.13, 0.15) materials.

Figure S2. Components of the electronic (a) and lattice thermal conductivity (b) for materials $Ca_{0.85}La_{0.15}Ag_{1-y}Sb$ (y = 0.11, 0.13, 0.15).

Figure S3. Powder X-ray diffraction patterns of material $Ca_{0.85}La_{0.15}Ag_{0.90}Sb$. The theoretical predictions of $Ca_{0.85}La_{0.15}Ag_{0.85}Sb$ and Ag were provided for comparison as well.

Figure S4. [AgSb] anionic framework structure of $Ca_{0.16(2)}Sr_{0.77(3)}La_{0.07(1)}Ag_{0.931(3)}Sb$ viewed along the *b*-axis. The long interlayered Ag-Sb distances (4.15 and 4.24 Å) as well as the almost planar [AgSb] net (in-plane Ag–Sb–Ag angle: 119.9°) both suggest high similarity to the SrAgSb structure, which evidently suggest the structure transformation of $Ca_{1-x-\delta}Sr_{\delta}La_{x}Ag_{1-y}Sb$ from the LiGaGe type towards the ZrBeSi type.

Figure S5. Temperature dependence of the heat capacity of materials $Ca_{1-\delta}Sr_{\delta}La_{0.15}Ag_{0.89}Sb$ (δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7).

Figure S6. Band gaps (a) evaluated by the peaks of Seebeck coefficient measurements and corresponding effective mass (b) with various Sr contents in $Ca_{0.85-\delta}Sr_{\delta}La_{0.15}Ag_{0.89}Sb$.

Figure S7. Electronic band structures calculated for hypothetical LiGaGe-type Ca₁₋ _xLa_xAg_ySb (left) and ZrBeSi-type SrAgSb (right).

Figure S8. Partial density of states (DOS) for ZrBeSi-type SrAgSb.