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EDS analyses on the compositions of single crystal of Ca0.16(1)Sr0.76(1)La0.07Ag0.931(3)Sb.

Element Weight% Atomic% Composition

Ca 2.62 6.86 0.20
Sr 19.45 23.25 0.67
Ag 31.39 30.48 0.13
Sb 40.58 34.92 0.87
La 5.95 4.49 1
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Table S1. Selected crystal data and structure refinement parameters for 
Ca0.16(2)Sr0.77(3)La0.07(1)Ag 0.931(3)Sb.

Formula Ca0.16(2)Sr 0.77(3)La0.07(1)Ag0.931(3)Sb

fw/ g·mol–1 305.67

T / K 273(2)

Radiation, wavelength Mo-Kα, 0.71073 Å

Space group, No. P6(3)mc (No.186)

Z 2

Cell dimensions

a / Å 4.7512(4)

c / Å 8.3913(15)

V / Å3 164.05(4)

calc / g·cm–3 6.188

Mo Kα  cm–1 2.693

R1 = 0.0132Final R indices a
[I>2] wR2 = 0.0291

R1 = 0.0143Final R indices a
[all data] wR2 = 0.0297

a  R1 = ∑||Fo| – |Fc||/∑|Fo|;  wR2 = [∑[w(Fo
2 – Fc

2)2]/∑[w(Fo
2)2]]1/2, and w = 1/[2Fo

2 + (A·P)2 + B·P], 

P = (Fo
2 + 2Fc

2)/3; A and B are weight coefficients.
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Table S2. Refined atomic coordinates and isotropic displacement parameters for 

Ca0.16(2)Sr 0.77(3)La0.07(1)Ag 0.931(3)Sb.

Atoms Wyckoff occ. x y z Ueq
a (Å2)

Ag 2b 0.931(3) 1/3 2/3 0.2465(5) 0.0230(5)

Sb 2b 1 1/3 2/3 0.7519(4) 0.0134(3)

La 2a 0.068(13) 0 0 0 0.0145(3)

Sr 2a 0.77(3) 0 0 0 0.0145(3)

Ca 2a 0.162(19) 0 0 0 0.0145(3)

a Ueq is defined as one third of the trace of the orthogonalized Uij tensor.
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Table S3. Important interatomic distances (Å) in Ca0.16(2)Sr0.77(3)La0.07(1)Ag0.931(3)Sb.

Atom pairs Distances (Å)

Sr/La/Ca  – Sb × 6 3.434(2)

Ag × 2 3.446(3)

Ag × 3 3.461(3)

Ag  – Sb × 3 2.7435(3)
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Table S4. Unit cell parameters refined from the powder diffraction patterns of Ca1-x-

δSrδLaxAg0.89Sb with various compositions.

Ca1-x-δSrδLaxAg0.89Sb a b c αβγ
x=0.15, δ=0 4.703(1)Å 4.703 Å 7.792(2) Å
x=0.15,δ=0.1 4.706(1) Å 4.706 Å 7.853(1) Å
x=0.15,δ=0.2 4.708(1) Å 4.708 Å 7.935(1) Å
x=0.15,δ=0.3 4.720(1) Å 4.720 Å 7.985(3) Å
x=0.15,δ=0.4 4.730(2) Å 4.730 Å 8.070(4) Å
x=0.15,δ=0.5 4.729(1) Å 4.729 Å 8.136(3) Å
x=0.15,δ=0.6 4.742(1) Å 4.742 Å 8.217(1) Å
x=0.15,δ=0.7 4.749(2) Å 4.749 Å 8.299(7) Å
x=0, δ=0.85 4.762(1) Å 4.762 Å 8.532(1) Å

α=90°
β=90°
γ=120°
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Figure S1. Powder X-ray diffraction patterns for Ca0.85La0.15Ag1-ySb (y = 0.11, 0.13, 
0.15) materials.
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Figure S2. Components of the electronic (a) and lattice thermal conductivity (b) for 
materials Ca0.85La0.15Ag1-ySb (y = 0.11, 0.13, 0.15).
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Figure S3. Powder X-ray diffraction patterns of material Ca0.85La0.15Ag0.90Sb. The 
theoretical predictions of Ca0.85La0.15Ag0.85Sb and Ag were provided for comparison 
as well.
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Figure S4. [AgSb] anionic framework structure of Ca0.16(2)Sr0.77(3)La0.07(1)Ag0.931(3)Sb 
viewed along the b-axis. The long interlayered Ag-Sb distances (4.15 and 4.24 Å) as 
well as the almost planar [AgSb] net (in-plane Ag−Sb−Ag angle: 119.9º) both suggest 
high similarity to the SrAgSb structure, which evidently suggest the structure 
transformation of Ca1-x-δSrδLaxAg1-ySb from the LiGaGe type towards the ZrBeSi 
type.
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Figure S5. Temperature dependence of the heat capacity of materials Ca1-

δSrδLa0.15Ag0.89Sb (δ= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7).
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Figure S6. Band gaps (a) evaluated by the peaks of Seebeck coefficient 
measurements and corresponding effective mass (b) with various Sr contents in Ca0.85-

δSrδLa0.15Ag0.89Sb.
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Figure S7. Electronic band structures calculated for hypothetical LiGaGe-type Ca1-

xLaxAgySb (left) and ZrBeSi-type SrAgSb (right).
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Figure S8. Partial density of states (DOS) for ZrBeSi-type SrAgSb.


