Supplementary Information

Synthesis of Au-V₂O₅ Composite Nanowire through Shape Transformation of Vanadium(III) Metal Complex for High-Performance Solid-State Supercapacitor

Siddheswar Rudra, ^a Arpan Kumar Nayak, ^b Rishika Chakraborty ^a Pradip K. Maji^c and Mukul Pradhan ^{a*}

^a Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya, India, 793003.

^b Department of Materials Science, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India, 721302.

^c Department of Polymer & Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh, India, 247001.

Figure S1. Comparative CV plot of the graphite sheet and synthesized $Au-V_2O_5$ in 0.5 M H_2SO_4 electrolyte at 5 mV sec⁻¹ scan rate.

Figure S2. Cyclic voltammograms of Au-V₂O₅ composite nanowires (blue coloured) and activated carbon (red coloured) using three electrode system in 0.5 M H_2SO_4 electrolyte at 10 mV s⁻¹ scan rate.

Figure S3. FT-IR spectrum of the synthesized $Au-V_2O_5$ composite nanowire.

Figure S4. (a-d) TEM, (e) SEM images of the composite nanowires show smooth surface morphology, (f) EDX analysis on a single composite nanowire.

Figure S5. (a) BET surface area plot of the synthesized Au-V₂O₅ and commercial V₂O₅. (b) BJH pore size distribution plot for the Au-V₂O₅ composite nanowire and bare V₂O₅.

Figure S6. EDX analysis of the intermediates isolated at different reaction intervals, (a) 10 min, (b) 30 min during the synthesis of the $Au-V_2O_5$ composite nanowire.

Figure S7. Redox guided shape transformation of the (a) octahedral VMC to (b) $Au-V_2O_5$ composite nanoflower through dissolution-nucleation-recrystallisation mechanism. (c) EDX analysis of the Au- V_2O_5 composite nanoflower.

Figure S8. TEM images of the (a, b, c) $Au-V_2O_5$ composite nanoflower; Elemental mapping on the (d) center and (e) tip of a petal of the composite nanoflower.

Figure S9. Comparative CV curves of the synthesized $Au-V_2O_5$ composite nanowire at 5 mV sec⁻¹ sweep rates in different electrolyte.

Figure S10. (a) Plot of specific capacitance (F g^{-1}) vs. scan rate (mV sec⁻¹) & (b) plot of specific capacitance (F g^{-1}) vs. current densities (A g^{-1}) of the synthesized Au-V₂O₅ composite and V₂O₅.

Figure S11. (a, b) SEM images of the composite nanowire $Au-V_2O_5$ after 5000 consecutive CD cycle.

Figure S12. Nyquist plots of the $Au-V_2O_5$ composite nanowires (a) before and (b) after 5000 cycles.

Seri al	Title	Specific Capacitan	Electrolyte	Cell type	Cycling performances		Referen ce
No		ce			Three electrode	Two electrode	-
1	V ₂ O ₅ nanowires	351	1 mol LiNO ₃	Three electrode	50 CD cycle (85%)	-	1
2	V ₂ O ₅ nanomaterials with rough surface	423	1 M LiNO ₃	Three electrode	100 CD cycle (74%)	-	2
3	$V_2O_5 \cdot 0.6H_2O$ nanoribbons	181	0.5 M K ₂ SO ₄	Three electrode	100 CD cycle (98%)	-	3
4	β -V ₂ O ₅ thin films	346	1 M LiClO₄ in PC	Three electrode	100 CV cycle (76%)	-	4
5	Hollow spherical V_2O_5	479	5 M LiNO ₃	Three electrode	100 CV cycle (70%)	-	5
6	Interconnected V ₂ O ₅ nanoporous network	304	0.5 M K ₂ SO ₄	Three electrode	600 CD cycle (76%)		6
7	V ₂ O ₅ powders	262	2 M KCl	Three electrode	-	-	7
8	Electrospun V ₂ O ₅ nanofibres	190	2 M KCl	Three electrode	-	-	8
9	V ₂ O ₅ nanobelts, nanoparticles, microspheres	140, 276, 308	1 M LiNO ₃	Three electrode	80 CD cycle (39, 24, and 23 %)	-	9
10	carbon coated V2O5 nanorods	321	0.5MK2SO4	Three electrode	1000 CD cycle (76%)	-	10
11	rGO supported V ₂ O ₅ networks	518	0.5 M K ₂ SO ₄	Three electrode	-	1000 CD cycle (83%)	11
12	$Au-V_2O_5$ nanowire	570	0.5 M H ₂ SO ₄	Three electrode	-	5000 CD cycle (89 %) (solid state asymmetric device	This work

Table S1. Comparison of specific capacitance of V_2O_5 nanomaterials from reported literature with the synthesized Au- V_2O_5 composite nanowire.

5 J. Yang, T. Lan, J. Liu, Y. Song and M. Wei, *Electrochim. Acta*, 2013, **105**, 489–495.

9 Y. Zhang, J. Zheng, Y. Zhao, T. Hu, Z. Gao and C. Meng, *Appl. Surf. Sci.*, 2016, **377**, 385–393.

11 B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, Mater. Chem. Phys., 2016, 170, 266–275.

¹ N. Wang, Y. Zhang, T. Hu, Y. Zhao and C. Meng, *Curr. Appl. Phys.*, 2015, **15**, 493–498.

² Y. Zhang and Y. Huang, Bull. Mater. Sci., 2017, 40, 1137–1149.

³ Q. T. Qu, Y. Shi, L. L. Li, W. L. Guo, Y. P. Wu, H. P. Zhang, S. Y. Guan and R. Holze, *Electrochem. commun.*, 2009, **11**, 1325–1328.

⁴ K. Jeyalakshmi, S. Vijayakumar, S. Nagamuthu and G. Muralidharan, Mater. Res. Bull., 2013, 48, 760–766.

⁶ B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, ACS Appl. Mater. Interfaces, 2012,4, 4484–4490.

⁷ Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G. X. Wang and H. K. Liu, *J. Power Sources*, 2006, **162**, 1451–1454.

⁸ G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar and M. Srinivasan, J. Mater. Chem., 2010, 20, 6720.

¹⁰ B. Saravanakumar, K. K. Purushothaman and G. Muralidharan, J. Electroanal. Chem., 2015, 758, 111–116.