Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Ultrathin porous nanosheet-assembled hollow cobalt nickel oxides microspheres with optimized compositions for efficient oxygen evolution reaction

Jun Zhao <sup>a</sup>, Xiao-ru Wang <sup>a</sup>, Xiao-jing Wang <sup>a</sup>, Yu-Pei Li <sup>a</sup>, Xiao-dong Yang <sup>a</sup>, Guodong Li <sup>b\*</sup> and Fa-tang Li <sup>a\*</sup>

<sup>a</sup>College of Science, Hebei University of Science and Technology, Shijiazhuang 0500 18, China.

<sup>b</sup>State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.



Fig. S1 XRD patterns of (a) s-CoA, (b) s-C<sub>6</sub>N<sub>1</sub>A, (c) s-C<sub>2</sub>N<sub>1</sub>A (d) s-C<sub>1</sub>N<sub>1</sub>A (e) s-C<sub>1</sub>N<sub>6</sub>A and (f) s-NiA.



Fig. S2 SEM images of (A) s-CoA, (B) s-C<sub>6</sub>N<sub>1</sub>A, (C) s-C<sub>2</sub>N<sub>1</sub>A (D) s-C<sub>1</sub>N<sub>1</sub>A (E) s-

 $C_1N_6A$  and (F) s-NiA. Scale bar: 1µm

| samples                             | Feed ratio of | Content of Co | Content of Ni | Atom ratio |
|-------------------------------------|---------------|---------------|---------------|------------|
|                                     | Co:Ni         | (mg/L)        | (mg/L)        | (Co:Ni)    |
| s-C <sub>6</sub> N <sub>1</sub> A   | 6:1           | 24.3          | 4.05          | 5.98:1     |
| s-C <sub>2</sub> N <sub>1</sub> A   | 2:1           | 19.2          | 9.5           | 2.01:1     |
| s-C <sub>1</sub> N <sub>1</sub> A   | 1:1           | 14.3          | 14.5          | 1:0.98     |
| s-C <sub>1</sub> N <sub>6</sub> A   | 1:6           | 7.05          | 43.0          | 1:6.12     |
| Co <sub>6</sub> -Ni <sub>1</sub> -O | 6:1           | 42.6          | 7.18          | 5.91:1     |
| Co <sub>2</sub> -Ni <sub>1</sub> -O | 2:1           | 34.5          | 17.0          | 2.02:1     |
| Co <sub>1</sub> -Ni <sub>1</sub> -O | 1:1           | 24.9          | 24.6          | 1.01:1     |
| Co <sub>1</sub> -Ni <sub>6</sub> -O | 1:6           | 7.05          | 43.0          | 1:6.12     |

Table S1. ICP results of s-CNA and Co-Ni Oxides



Fig. S3 XRD patterns of (a) CoI, (b) h-C<sub>6</sub>N<sub>1</sub>I, (c) h-C<sub>2</sub>N<sub>1</sub>I (d) h-C<sub>1</sub>N<sub>1</sub>I (e) h-C<sub>1</sub>N<sub>6</sub>I and (f) NiI.



Fig. S4 SEM images of (A) CoI, (B) *h*-C<sub>6</sub>N<sub>1</sub>I, (C) *h*-C<sub>2</sub>N<sub>1</sub>I (D) *h*-C<sub>1</sub>N<sub>1</sub>I (E) *h*-C<sub>1</sub>N<sub>6</sub>I and (F) NiI.



Fig.S5 SEM images of (A)  $Co_3O_4$ , (B)  $Co_6-Ni_1-O$ , (C)  $Co_2-Ni_1-O$  (D)  $Co_1-Ni_1-O$  (E)  $Co_1-Ni_6-O$  and (F) NiO.



Fig.S6 EDX anlysis of (a)  $Co_3O_4$ , (b)  $Co_6$ -Ni<sub>1</sub>-O, (c)  $Co_2$ -Ni<sub>1</sub>-O (d)  $Co_1$ -Ni<sub>1</sub>-O (e)  $Co_1$ -Ni<sub>6</sub>-O and (f) NiO.

Table S2 Textural parameters of  $Ni_x$ -Co<sub>y</sub>-O, Co<sub>3</sub>O<sub>4</sub>, NiO obtained by calcining intermediates at 300 °C for 2 h.

|                                     | <b>BET surface area</b> | Pore volume                        | Pore diameter |
|-------------------------------------|-------------------------|------------------------------------|---------------|
|                                     | $(m^2 g^{-1})$          | (cm <sup>3</sup> g <sup>-1</sup> ) | (nm)          |
| C0 <sub>3</sub> O <sub>4</sub>      | 160                     | 0.71                               | 15.7          |
| Co <sub>6</sub> -Ni <sub>1</sub> -O | 166                     | 0.76                               | 16.2          |
| Co <sub>2</sub> -Ni <sub>1</sub> -O | 181                     | 0.83                               | 23.7          |
| Co <sub>1</sub> -Ni <sub>1</sub> -O | 215                     | 0.79                               | 14.7          |
| Co <sub>1</sub> -Ni <sub>6</sub> -O | 159                     | 0.68                               | 14.9          |
| NiO                                 | 150                     | 0.21                               | 5.6           |



Fig.S7 (a) The XRD pattern and (b) SEM image of the obtained *s*-Co<sub>2</sub>-Ni<sub>1</sub>-O (solid spheres), the inset is the corresponding TEM image. As shown in Fig. S7a, XRD pattern shows the *s*-Co<sub>2</sub>-Ni<sub>1</sub>-O can be indexed to spinel NiCo<sub>2</sub>O<sub>4</sub>, SEM and TEM images shown in Fig. S7b reveal that *s*-Co<sub>2</sub>-Ni<sub>1</sub>-O is composed of solid spheres with size of 0.5-0.8  $\mu$ m.



Fig. S8 LSV curves of Co<sub>2</sub>-Ni<sub>1</sub>-O and *s*-Co<sub>2</sub>-Ni<sub>1</sub>-O, the inset is the corresponding Tafel slopes.



Fig. S9 N<sub>2</sub> adsorption-desorption isotherms of *s*-Co<sub>2</sub>-Ni<sub>1</sub>-O.



Fig.S10 Cyclic voltammetry (CV) curves of (a)  $Co_3O_4$ , (b)  $Co_6-Ni_1-O$ , (c)  $Co_2-Ni_1-O$ (d)  $Co_1-Ni_1-O$  (e)  $Co_1-Ni_6-O$  and (f) NiO tested at various scan rates from 10 to 50 mV s<sup>-1</sup>.



Fig. S11 (a) The XRD pattern and SEM image of  $Co_2$ -Ni<sub>1</sub>-O after long-term durability test under a static overpotential of 310 mV. To investigate the structure and component of  $Co_2$ -Ni<sub>1</sub>-O after OER for 12 h, 5 mg  $Co_2$ -Ni<sub>1</sub>-O suspensions were loaded on the polished Ti plate to conduct OER. After the durability test, the catalyst on the Ti plate was used for XRD measurement. The three diffraction peaks labeled "\*" were indexed to Ti.

| Catalyst                                         | Electrolyte Su | Substrate | Overpotential                     | Tafel slope           | Ref.                                 |
|--------------------------------------------------|----------------|-----------|-----------------------------------|-----------------------|--------------------------------------|
|                                                  |                |           | <b>F</b>                          | /mV dec <sup>-1</sup> |                                      |
| Co <sub>2</sub> .Ni <sub>1</sub> -O              | 1М КОН         | Ni        | 310 mV at 10 mA cm <sup>-2</sup>  | 57                    | This work                            |
|                                                  |                |           | 370 mV at 100 mA cm <sup>-2</sup> |                       |                                      |
|                                                  | 1M KOH         | Ni        | 315 mV at 100 mA cm <sup>-2</sup> | 54                    | Adv. Funct. Mater. 2008, 18,         |
| Core-ring NiCo <sub>2</sub> O <sub>4</sub>       |                |           |                                   |                       | 1440.                                |
| NiC02O4                                          | 1M KOH         | Ni        | 438 mV at 100 mA cm <sup>-2</sup> | 59                    | Adv. Funct. Mater. 2008, 18,         |
|                                                  |                |           |                                   |                       | 1440.                                |
| Ni <sub>x</sub> Co <sub>3-X</sub> O <sub>4</sub> |                |           |                                   |                       |                                      |
| nanowire (Ni/Co= 1:0.3)                          | 1M NaOH        | Ti foils  | -                                 | 54                    | Adv. Mater. 2010, 22, 1926.          |
| Ni-Co 3D nanosheets                              | 1M NaOH        |           |                                   |                       | Adv. Energy Mater. 2015, 5,          |
|                                                  | (pH13.6)       | FTO       | 340 mV at 10 mA cm <sup>-2</sup>  | 51                    | 1500091.                             |
| Bulk NiCo <sub>2</sub> O <sub>4</sub>            | 1 M KOH        | GCE       | 420 mV at 10 mA cm <sup>-2</sup>  |                       | Angew. Chem. Int. Ed. 2015,          |
|                                                  |                |           |                                   | 57                    | 54, 7399                             |
| NiCo <sub>2</sub> O <sub>4</sub>                 | 1M NaOH        | -         | 290 mV at 10 mA cm <sup>-2</sup>  | 53                    | Angew. Chem. Int. Ed. 2016,          |
|                                                  |                |           |                                   |                       | 55, 1                                |
| N-doped graphene                                 |                | Graphene  |                                   |                       |                                      |
| NiCo <sub>2</sub> O <sub>4</sub> film            | КОН            | films     | 373  mV at 5 mA cm <sup>-2</sup>  | 156                   | ACS Nano 2013, 7, 10190.             |
| Needle like NiCo <sub>2</sub> O <sub>4</sub>     | 1 M NaOH       | -         | 370 mV at 10 mA cm <sup>-2</sup>  | 65.46                 | ACS Appl. Mater. Interfaces          |
|                                                  |                |           |                                   |                       | <b>2017</b> , 9, 44567.              |
| Ni-Co <sub>2</sub> -O                            | 0.1 M KOH GO   |           | 362 mV at 10 mA cm <sup>-2</sup>  | 64.4                  | Chem. Commun. <b>2015</b> , 51,      |
|                                                  |                | GCE       |                                   |                       | 7851                                 |
| NiCo <sub>2</sub> O <sub>4</sub> nanostructures  | 0.1 M KOH      |           | 340 mV at 10 mA cm <sup>-2</sup>  | 75                    | Dalton Transactions 2015, 44,        |
|                                                  |                | GCE       |                                   |                       | 4148                                 |
| NiCo <sub>2</sub> O <sub>4</sub> nanoneedles     | 1M KOH         | FTO       | 323 mV at 10 mA cm <sup>-2</sup>  | 292                   | J. Phys. Chem C <b>2014</b> 118      |
|                                                  |                |           |                                   |                       | 25939                                |
| NiCo.O. paposheats                               | 1М КОН         | FTO       | -                                 | 303                   | I Phys Chem C <b>201</b> A 118       |
| 100204 nanosnetts                                |                | 110       | -                                 | 515                   | 5. 1 nys. Chem. C <b>2017</b> , 110, |

Table S3 Comparison of OER activities for some cobalt nickel oxides catalysts in basic solution.

|                                             |          |        |                                    |      | 25939.                            |
|---------------------------------------------|----------|--------|------------------------------------|------|-----------------------------------|
| Hierarchical hollow                         | 1 M NaOH | RDE    | 419.3 mV at 10 mA cm <sup>-2</sup> | 51.0 | J. Power Sources 2014, 268,       |
| urchins of NiCo <sub>2</sub> O <sub>4</sub> |          |        |                                    | 51.3 | 341                               |
| NiCo <sub>2</sub> O <sub>4</sub> nanowires  | 1 M KOH  | FTO    | 460 mV at 10 mA cm <sup>-2</sup>   |      | J. Mater. Chem. A 2014, 2,        |
| arrays                                      |          |        |                                    | -    | 20823                             |
| NiCo <sub>2</sub> O <sub>4</sub> core-shell | 1 M NaOH | Carbon | 320 mV at 10 mA cm <sup>-2</sup>   | (2.1 | Nano Energy <b>2015</b> , 11, 333 |
| nanowire                                    |          | cloth  |                                    | 63.1 |                                   |