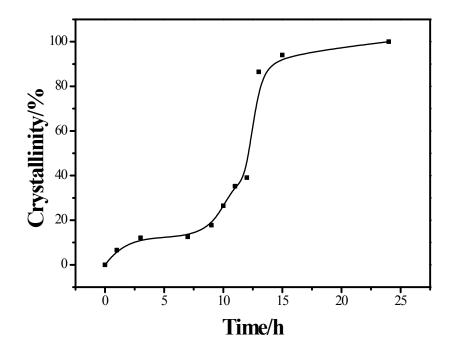
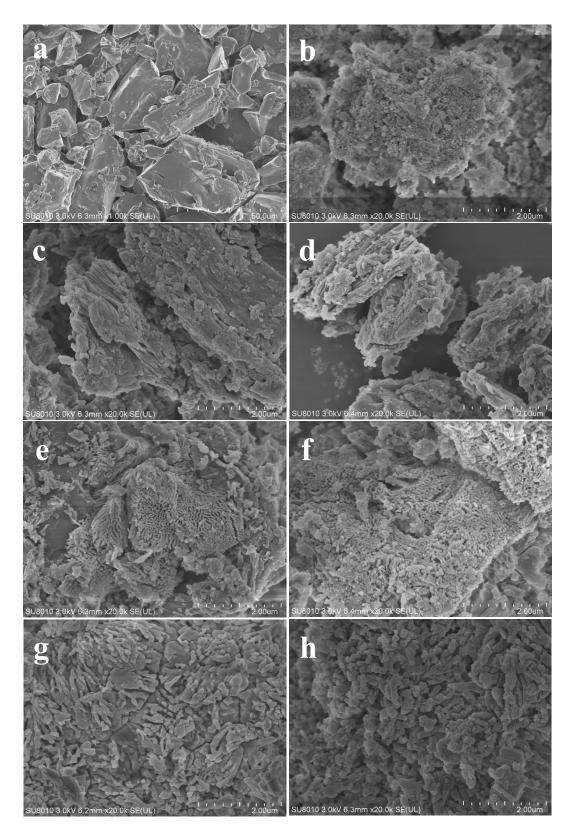
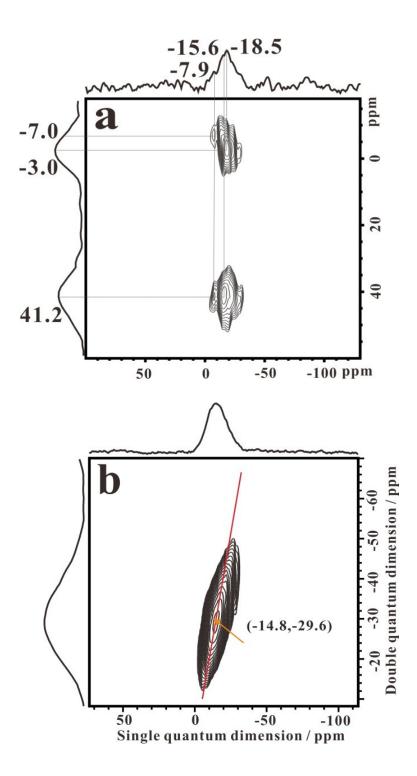
New Insights of Di-*n*-propylamine (DPA) Molecule as an Organic Structural Directing Agent (OSDA) in the Crystallization of AlPO₄-11 Molecular Sieve


Na Sheng,^a Yueying Chu,^b Shaohui Xin,^b Qiang Wang,^b Xiaolong Liu,^b Jun Xu,^b Feng-Shou Xiao,^{*a} and Feng Deng^{*b}

^a Department of Chemistry, Zhejiang University, Hangzhou 310028, China.


^b State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.

Characterization. The ³¹P-{²⁷Al} PT-*J*-HMQC MAS NMR experiments were performed on an 11.7 T Bruker AVANCE-III spectrometer using commercial 4 mm outer diameter rotors at the spinning frequency of 12.5 kHz, tuning and matching to ¹H, ³¹P and ²⁷Al Larmor frequencies (500.6 MHz, 202.6 MHz and 130.5 MHz, respectively). An initial ¹H-³¹P CP transfer was used with a contact time of 3 ms and rf-field of v_{31P, CP} =43.03 kHz and v_{1H, CP} =55.68 kHz. The ³¹P-{²⁷Al} PT-*J*-HMQC pulse sequence with CT selective $\pi/2$ pulses and π pulses were employed on ²⁷Al and ³¹P channels with $\tau_{\pi/2, 27Al} = \tau_{\pi, 27Al}/2 = 8.5$ us and $\tau_{\pi/2, 31P} = \tau_{\pi, 31P}/2 = 4.5$ us, respectively. Continuous-wave proton decoupling with amplitude of 70.42 kHz was used at the end of CP transfer. The Population transfer enhancement of between ³¹P and ²⁷Al was achieved with a sideband-selective (SS) WURST-80 irradiation on ²⁷Al with a length of 75 us that used a sweep frequency range of v_R. The values for peak RF amplitude and offset of WURST-80 were optimized with respect to the different samples: (v₁^{max}, v_{offset}) = (10, 170) kHz on ²⁷Al channel. 30 t_1 increments of 80 µs were acquired in the first dimension and a total of 1000 scans were accumulated with a recycle time of 1.5 s.


The 2D ³¹P-³¹P DQ-SQ MAS NMR experiments were performed on an 9.4 T Bruker AVANCE-III spectrometer using commercial 4 mm outer diameter rotors at the spinning frequency of 10 kHz, tuning and matching to ¹H, ³¹P Larmor frequencies (399.3 MHz and 161.6 MHz, respectively). ¹H-³¹P CP experiments with a contact time of 4 ms and rf-field of $v_{31P, CP}$ =86.27 kHz and $v_{1H, CP}$ =55.93 kHz was employed to prepare the initial ³¹P signal. RFDR homonuclear recoupling was used on the ³¹P channel with $v_{nut,31P}$ =20.83 kHz. continuous-wave ¹H decoupling with an amplitude of 67.02 kHz was used at the end of CP transfer, while a TPPM proton decoupling with an amplitude of 44.66 kHz was used during acquisition. The increment in the indirect dimension (*t*₁) was set to 100 µs, and 2048 scans were acquired for each *t*₁ increment.

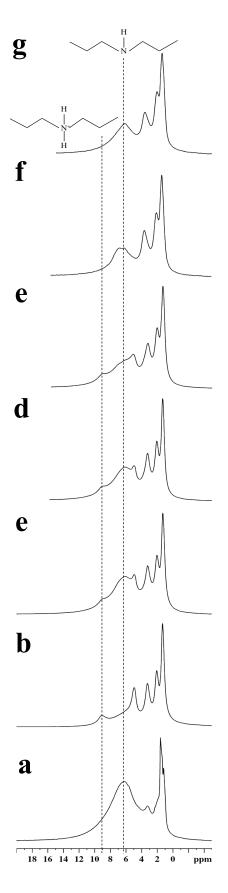

Figure S1. The dependence of S-AlPO₄-11 crystallinity on the crystallization time.

Figure S2. The SEM images of S-AlPO₄-11 at crystallization time of (a) 0, (b) 1, (c) 3, (d) 7, (e) 9, (f) 10, (g) 13, and (h) 24 h, respectively.

Figure S3. (a) ${}^{31}P-{}^{27}A1$ PT-*J*-HMQC and (b) ${}^{31}P-{}^{31}P$ 2D DQ-SQ MAS NMR spectra of S-AlPO₄-11 sample crystallization at 2 h.

Figure S4. ¹H MAS spectra of S-AlPO₄-11 samples crystallized at (a) 1, (b) 3, (c) 7, (d) 9, (e) 11, (f) 15, and (h) 24 h, respectively.

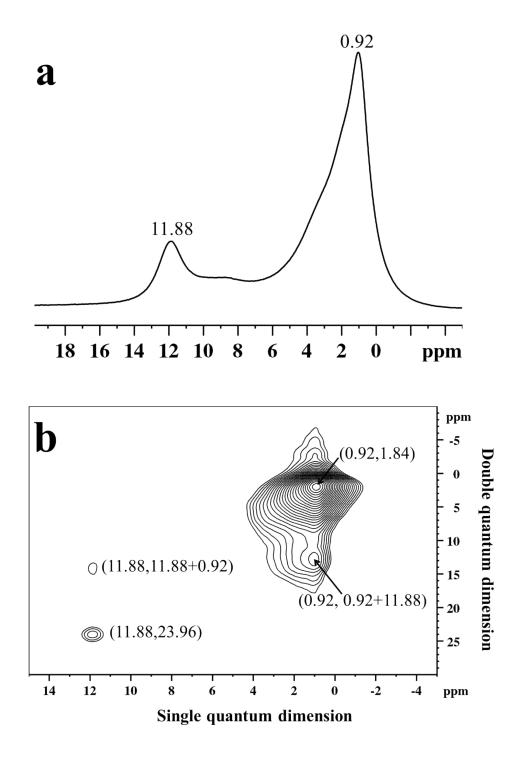


Figure S5. (a) ¹H MAS and (b) 2D ¹H DQ-SQ MAS spectra of DPA \cdot H₃PO₄.

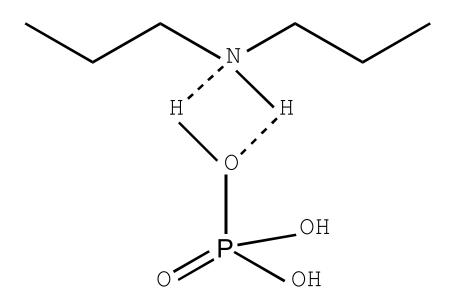
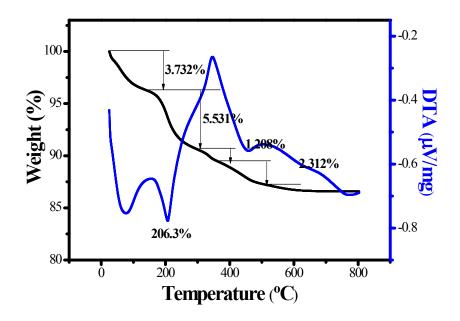



Figure S6. Schematic structure of DPA·H₃PO₄.

Figure S7. TG-DTA curves of S-AlPO₄-11 sample crystallized at 24h.