Novel hetero-bimetallic coordination polymer as a single source of highly dispersed Cu/Ni nanoparticles for efficient photocatalytic water splitting

Shaista Ibrahim,^{1,2} Imran Majeed,¹ Yuhong Qian,² Azhar Iqbal,¹ Dan Zhao,^{2*} David R. Turner^{3*} and Muhammad Arif Nadeem^{1*}

¹Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan

²Department of Chemical & Biomolecular Engineering, National University of Singapore, 4

Engineering Drive 4, 117585 Singapore

³School of Chemistry, Monash University, Clayton, Victoria 3800, Australia

*Contact details:

M.A.N; manadeem@qau.edu.pk, +92-51-9064-2062

D.Z; chezhao@nus.edu.sg, +65-6516 4679

D.R.T; david.turner@monash.edu, +61 3 9905 6293

Characterization

Single Crystal X-ray diffraction data were collected using the MX1 beamline at the Australian Synchrotron operating at 17.4 keV ($\lambda = 0.7107$ Å)⁻¹. The data collection temperature was maintained at 100 K using an open-flow N₂ cryostream. Data collection was conducted using the program Blu-Ice.¹ Initial data reduction was carried out using the XDS package.² The structure was solved by direct methods using SHELXS-2013.³ Least-squares refinement against F² was conducted using SHELXL-2013 using the program X-Seed as a graphical interface.⁴ All non-H atoms were refined using an anisotropic model. H atoms were placed in idealized positions and refined using riding models. H atoms of the lattice water molecules

were located from the Fourier difference map and refined using distance restraints. Powder XRD patterns were collected on Bruker D8 Advance X-ray powder diffractometer equipped with a Cu sealed tube ($\lambda = 1.54178$ Å) at a scan rate of 2 ° min⁻¹. The Fourier transform infrared (FTIR) spectra were studied with Bio-Rad FTS-3500 ARX FTIR spectrometer. Thermogravimetric studies (TGA) were carried out using a Shimadzu DTG-60AH in the temperature range of 25 to 800 °C under flowing air (30 mL min⁻¹) and a heating rate of 10 °C min⁻¹. UV-vis absorbance spectra of the photocatalysts were collected over the wavelength range of 200-800 nm using a Thermo Fisher Scientific UV-vis spectrophotometer equipped with a praying mantis diffuse reflectance accessory. Field-emission transmission electron microscopy (FE-TEM) was conducted on a JEOL-JEM 2100F transmission electron microscope (200 kV). X-ray photoelectron spectroscopy (XPS) experiments were done with a Kratos AXIS Ultra DLD surface analysis instrument using a monochromatic Al Kα radiation (1486.71 eV) at 15 kV as the excitation source. The take-off angle of the emitted photoelectrons was 90° (the angle between the plane of sample surface and the entrance lens of the detector). Peak position was calibrated by referencing the C 1s peak position of adventitious carbon for a sample (284.8 eV), and shifting all other peaks in the spectrum accordingly. Fitting was done using the program Casa XPS. Photoluminescence (PL) studies were done by using a Flau Time 300 (FT-300) steady-state and lifetime spectrometer, PicoQuant GmbH, Germany. The PL was measured by using a pulsed LED laser excitation source, PLS-300, centered at 305 nm with full-width half-maximum (FWHM) of ~ 416 ps and pulse energy 0.077 pJ. The PL curves were fitted by using Easy Tau and FluoFit software.

Hydrogen production experiments

5 mg of photocatalyst was dispersed in the Pyrex reactor (140 mL) containing 25 mL of glycerol/water mixture (20 vol. % glycerol) as sacrificial reagent. The suspension was purged with N_2 for 40 min in order to force out the dissolved and headspace oxygen otherwise oxygen can scavenge electrons from the C.B of TiO₂ and generate superoxide radicals which

react with sacrificial electron donor.⁵ UV light excitation source [Spectroline model SB-100P/F lamp (100 W, 365 nm)] was placed at a distance of 10 cm from the reactor. The photon flux measured at the sample was ~6.5 mW cm⁻² (comparable to UV flux in sunlight). H₂ evolution was checked by removing the gas head space samples (0.5 mL) at regular time intervals and injecting them into the GC (Shimadzu GC 2014) equipped with a TCD detector and molecular sieve capillary column (Length = 25 mm; ID = 0.32 mm; average thickness 0.50 µm). Volume of H₂ evolved during photoreaction was calculated against an internal calibration curve. The photocatalytic tests for each sample were repeated at least three times for accuracy. TiO₂, with band gap of 3.15eV, can only be excited by radiation below ca. 400 nm. The external quantum efficiency (EQE) was found to be 15.78% under similar photocatalytic reaction conditions using the following equation.⁶

$$EQE = \underline{nH_2 \times N_A \times h \times c \times 2}_{t_{irr} \times \lambda \times I \times A} \times 100$$

Where

 $nH_2 = Number of moles of hydrogen produced$

 N_A = Avogadro's number

h = Plank's constant

c = speed of light

 t_{irr} = Irradiation time

 λ = Wavelength of incident light

I = Intensity of lamp

A = Illuminated area of photoreactor

Turnover Number (TON)

Activity of bulk = $[mol(H_2) / g(bulk catalyst)]$

Activity relative to proportion of metal = $[mol(H_2) / (g(bulk catalyst) x wt.%(metal))]$

TON relative to active metal = $[mol(H_2)] / [(g(bulk catalyst) x wt.%(metal)) / Mr(metal)]$ e.g. In the case of 1.0% Cu-Ni/TiO₂ composites, where a 1.0 wt. % Cu/Ni loading was done on TiO₂, the metrics for dihydrogen evolution are as following equation after 8 h.⁷ Activity of bulk = 73.88239 x 10⁻³ mol(H₂) g(bulk)⁻¹ Activity relative to proportion of metal = 73.88239 x 10⁻³ mol(H₂) g(bulk)⁻¹ / (1.0/100) wt. % = 7.388239 mol(H₂) g(metal)⁻¹ TON = 7.388239 mol(H₂) g(metal)⁻¹x(63.546+58.69 gmol⁻¹) = 903.11

Turn of frequency (TOF)

TOF relative to active metal	= TON h ⁻¹
TOF	= 903.11 / 8 h
	$= 112.89 \text{ h}^{-1}$

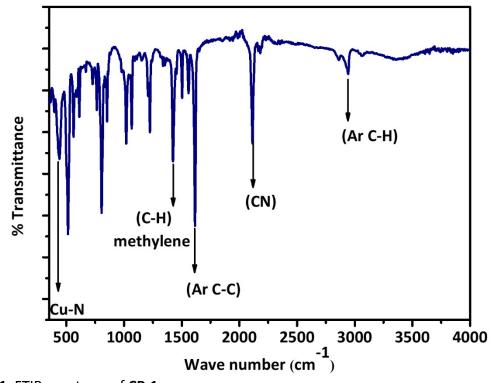
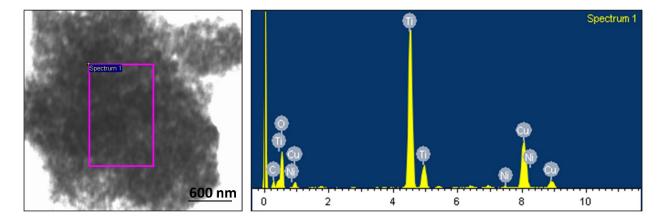
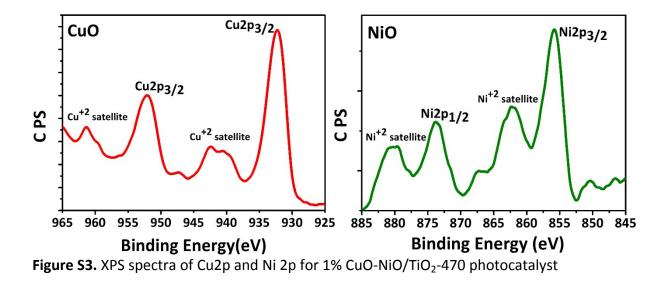




Figure S1. FTIR spectrum of CP-1

Figure S2. TEM EDX studies on 1%Cu-Ni/TiO₂-470 composite: (a) TEM image at 600nm; (b) spectrum indicates the presence of Ti, O, Ni and Cu.

Bond lengths (Å)			
Cu1-N1	2.111(3)	Cu2–N9	2.005(3)
Cu1-N3	2.252(3)	Ni1-C27	1.844(3)
Cu1-N5	2.011(2)	Ni1-C28	1.869(3)
Cu2–N2	2.250(3)	Ni2-C29	1.837(4)
Cu2–N4	2.095(2)	Ni2-C30	1.868(3)
Cu2–N7	2.007(4)	Ni2-C31	1.833(4)
Bond angles (°)			
N1-Cu1-N1	180.00	N4-Cu2-N4	178.10(9)
N1-Cu1-N3	87.37(9)	N2-Cu2-N9	90.9(1)
N1-Cu1-N3	92.63(9)	N4-Cu2-N7	90.9(1)
N1–Cu1–N5	90.44(9)	N4-Cu2-N9	89.1(1)
N1-Cu1-N5	89.56(9)	N9-Cu2-N7	180.0(1)
N3-Cu1-N3	180.00	C28-Ni1-C28	180.00
N3-Cu1-N5	90.95(9)	C28-Ni1-C27	89.8(1)
N3-Cu1-N5	89.05(9)	C28-Ni1-C27	90.2(1)
N5-Cu1-N5	180.00	C27–Ni1–C27	180.00
N2–Cu2–N2	178.2(1)	C30–Ni2–C30	179.4(1)
N2–Cu2–N4	87.8(1)	C30–Ni2–C29	89.7(2)
N2–Cu2–N4	92.2(1)	C30-Ni2-C31	90.3(2)
N2–Cu2–N7	89.1(1)	C29–Ni2–C31	180.00

Table S1: Selected bond lengths and bond angles of CP-1

References

- N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price and A. Riboldi-Tunnicliffe, *Journal of synchrotron radiation*, 2015, 22, 187-190.
- 2. W. Kabsch, Acta Crystallographica Section D: Biological Crystallography, 2010, **66**, 125-132.
- 3. G. M. Sheldrick, *Acta Crystallographica Section A: Foundations of Crystallography*, 2008, **64**, 112-122.
- 4. L. J. Barbour, *Journal*, 2001.
- 5. A. Nadeem, J. Muir, K. Connelly, B. Adamson, B. Metson and H. Idriss, *Physical Chemistry Chemical Physics*, 2011, **13**, 7637-7643.

- T. Sakai, D. Mersch and E. Reisner, *Angewandte Chemie International Edition*, 2013,
 52, 12313-12316.
- 7. K. Meyer, S. Bashir, J. Llorca, H. Idriss, M. Ranocchiari and J. A. van Bokhoven, *Chemistry-A European Journal*, 2016, **22**, 13894-13899.