Electronic Supplementary Information

Non-covalent polyhedral oligomeric silsesquioxane-polyoxometalates as inorganic–organic–inorganic hybrid materials for visible-light photocatalytic splitting of water

Rajendran Prabu,^{1,2,#} Peramaiah Karthik,^{2,#} Nallasamy Palanisami,³ Paolo P. Pescarmona,⁴ Bernaurdshaw Neppolian² and Swaminathan Shanmugan^{1,2,*}

¹Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur,

Kancheepuram 603203, Tamil Nadu, India.

²SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India.

³Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014,

Tamil Nadu, India.

⁴Chemical Engineering Group, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.

Authors contributed equally

Corresponding author: Swaminathan Shanmugan (shanmugan.s@ktr.srmuniv.ac.in)

Contents

Section S1. Synthesis of heptaisobutylpropylamine-T8-Silsesquioxane (POSS-NH₂) and Photoelectrochemical studies

Table S1. Solubility of POMs, POSS-NH₂ and POM-POSS Materials

 Table S2.
 ¹H NMR Integral values POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS

Figure S1. ¹³C NMR spectra of POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Figure S2. ³¹P NMR spectra of POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Figure S3. ²⁹Si NMR spectra of POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Figure S4. Particle size distribution analysis.

Figure S5. UV-visible DRS spectra of free POMs

Figure S6. SEM Image of POM(MoV)-POSS hybrids after 5 cycles of photocatalytic H_2 production reaction.

Figure S7. GC graph of photocatalytic H₂ production using free POM (MoV).

Figure S8. GC graph of photocatalytic H₂ production using free POM (Mo).

Figure S9. GC graph of photocatalytic H₂ production using free POM (W).

Figure S10. UV-vis absorbance spectra of free POMs in water (Reaction solution).

Figure S11. Mott-Schottky plots for POSS-NH₂.

Table S3. Comparison of hydrogen production for POM based materials.

Section S1

Synthesis of heptaisobutylpropylamine-T8-Silsesquioxane (POSS-NH₂):

To a solution of 1,3,5,7,9,11,14-Heptaisobutyl tricyclo[7.3.3.1]heptasiloxane-endo-3,7,14-triol (2 g, 2.53 mmol) in dichloromethane (20 mL), (3-Aminopropyl) trimethoxysilane (0.5 ml, 2.79 mmol) in dichloromethane (20 mL) was added under nitrogen atmosphere at RT. The reaction mixture was stirred for 48 hours, then the colourless solution was evaporated under vacuum to afford colourless solid (POSS-NH₂). Yield: 2.23g (89%). IR (KBr, cm⁻¹): 3390(br), 2955(s), 1579(br), 1465(m), 1332(w), 1231(m), 1113(s), 956(m), 837(m), 745(s), 687(w), 560(w), 482(m). ¹H NMR (500 MHz, CDCl₃, TMS, ppm): δ = 0.58 (t, 2H, -*CH*₂CH₂CH₂NH₂), 0.60(d, 14H,-CH₂ in ⁱBu), 0.95 (dd, 42H,-CH₃), 1.55 (m, 2H, -CH₂CH₂CH₂NH₂), 1.85 (septet, 7H, -CH), 2.67 (t, 2H, -CH₂CH₂CH₂NH₂). ¹³C NMR (100 MHz, CDCl₃, TMS, ppm): δ = 44.9, 27.3, 25.8, 24.0, 22.6, and 9.3 (aliphatic-carbons). ²⁹Si NMR (79.30 MHz, CDCl₃, TMS, ppm): δ = -67.8, -67.6, -67.2. Positive ion ESI-Mass m/z = 874.20 [POSS-NH₂].

Photo-electrochemical studies

The conventional three-electrode system was used for the photo-electrochemical studies. Saturated Ag/AgCl and Pt wire were used as reference and counter electrodes, respectively. For the photocurrent measurement, 250 W Xe arc lamp (OSRAM, Germany) was utilized as a light source. The working electrode was prepared by the mixing 50 mg of photocatalyst with 150 ml of PEG (mol. Wt 400) and 125 ml of ethanol. Then, it was coated on a 2.5 cm² fluorine-doped tin oxide (FTO) glass substrate with an active area of about 1 cm² by a doctor-blade method using scotch tape as the spacer and it was dried at 80 °C.¹

Description of the photoluminescence (PL) emission measurements

We have performed PL analysis in solid state mode. The synthesized POM-POSS hybrid materials were loaded in a sample holder and the PL emission spectra were recorded using a spectrofluorometer (Fluoramax4p) at 250 nm excitation wavelength. Importantly, the excitation wavelength was kept constant for all the measurements. The excitation wavelength of the POSS-NH₂ was chosen based on the UV-DRS absorbance spectra (Fig. 5). It was clearly seen that the absorption edge of POSS-NH₂ is located at ~ 250 nm.

Table S1. Solubility	v of POMs,	POSS-NH ₂ and	POM-POSS	Materials
----------------------	------------	--------------------------	----------	-----------

SOLVENT	H ₃ PW ₁₂ O ₄₀	H ₃ PM0 ₁₂ O ₄₀	H ₅ V ₂ Mo ₁₀ O ₄₀	POSS- NH ₂	POM(W) -POSS	POM(Mo) -POSS	POSS(MoV) -POSS
WATER	Soluble	Soluble	Soluble	Insoluble	Insoluble	Insoluble	Insoluble
ETHANOL	Soluble	Soluble	Soluble	Soluble	Insoluble	Insoluble	Insoluble
METHANOL	Soluble	Soluble	Soluble	Insoluble	Soluble	Soluble	Soluble
TETRAHYDROFURAN	Insoluble	Insoluble	Insoluble	Soluble	Soluble	Soluble	Soluble
DICHLOROMETHANE	Insoluble	Insoluble	Insoluble	Soluble	Soluble	Soluble	Soluble
HEXANE	Insoluble	Insoluble	Insoluble	Soluble	Soluble	Soluble	Soluble

Compounds	Peaks	δ-value	Integral	Ratio
		(ppm)	value	
POSS-NH ₂	$-CH_2CH_2CH_2NH_2$	2.67	1	1:1:8:21:3.5
	-CH ₂ CH ₂ CH ₂ NH ₂	1.55	0.9	$(1 ^{n}\text{Pr}: 7 ^{i}\text{Bu})$
	-CH ₂ CH ₂ CH ₂ NH ₂ &	0.58 & 0.60	8.4	
	-CH ₂ in ⁱ Bu			
	-CH ₃ in ⁱ Bu	0.95	21.4	
	-CH in ⁱ Bu	1.85	3.9	
POM(W)-POSS	$-CH_2CH_2CH_2NH_2$	3.31	1	1:1:8:21:3.5
	$-CH_2CH_2CH_2NH_2$	1.25	0.8	$(1 ^{n}\text{Pr}: 7 ^{i}\text{Bu for})$
	-CH ₂ CH ₂ CH ₂ NH ₂ &	0.58 & 0.60	8.6	each cage)
	-CH ₂ in ⁱ Bu			
	-CH ₃ in ⁱ Bu	0.95	21.3	
	-CH in ⁱ Bu	1.85	3.7	
POM(Mo)-POSS	$-CH_2CH_2CH_2NH_2$	3.36	1	1:1:8:21:3.5
	$-CH_2CH_2CH_2NH_2$	1.25	0.9	$(1 ^{n}\text{Pr}: 7 ^{i}\text{Bu for})$
	-CH ₂ CH ₂ CH ₂ NH ₂ &	0.58 & 0.60	8.2	each cage)
	-CH ₂ in ⁱ Bu			
	-CH ₃ in ⁱ Bu	0.95	21.4	
	-CH in ⁱ Bu	1.85	3.1	
POM(MoV)-	$-CH_2CH_2CH_2NH_2$	2.96	1	1:1:8:21:3.5
POSS	$-CH_2CH_2CH_2NH_2$	1.25	0.8	$(1 ^{n}\text{Pr}: 7 ^{i}\text{Bu for})$
	-CH ₂ CH ₂ CH ₂ NH ₂ &	0.58 & 0.60	8.1	each cage)
	-CH ₂ in ⁱ Bu			
	-CH ₃ in ⁱ Bu	0.95	21.2	
	-CH in ⁱ Bu	1.85	3.3	

Table S2. ¹H NMR Integral values of POSS-NH2, POM(W)-POSS, POM(Mo)-POSS andPOM(MoV)-POSS.

Fig. S1 ¹³C NMR spectra of POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Fig. S2 ³¹P NMR spectra of POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Fig. S3 ²⁹Si NMR spectra of POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS in CDCl₃.

Fig. S4 Particle size distribution analysis: (a) POM(W)-POSS; (b) POM(Mo)-POSS; (c) POM(MoV)-POSS.

Fig. S5 UV-vis DRS spectra of free POMs

Fig. S6 SEM Image of POM(MoV)-POSS hybrids after 5 cycles of photocatalytic H₂ production reaction.

In order to compare the photocatalytic H₂ production activity of POMs with POSS-NH₂ hybrids, we have performed photocatalytic H₂ production experiments for pristine POMs. It is very interesting to point out that the pristine POMs did not show any H₂ production activity under similar conditions (Fig. S7, S8 and S9). This can be explained considering that the high solubility of POMs in water makes them unstable and thereby restrict their photocatalytic activity. A similar result was previously reported by Zhou et. al for photocatalytic degradation of Rhodamine B by using molybdenum–based polyoxometalates.² Theyconcluded that during photocatalysis process, the POMs decomposed due to high anionic charge.^{2,3} Moreover, the instability of POMs in the reaction solution was confirmed by UV-vis absorbance spectroscopy. As shown in Fig. S10, there is no characteristic absorption peak observed in the visible region for free POMs in water. This result clearly confirms the instability of POMs in water and it also reflected in their photocatalytic activity.

Fig. S7 GC graph of photocatalytic H₂ production using free POM(MoV).

Fig. S8 GC graph of photocatalytic H₂ production using free POM(Mo).

Fig. S9 GC graph of photocatalytic H₂ production using free POM(W).

Fig. S10 UV-vis absorbance spectra of free POMs in water (reaction solution).

Fig. S11 Mott-Schottky plots for POSS-NH₂.

The charge carrier densities (ND) of POSS-NH₂ and POSS-POMs hybrids were calculated by using following equation:

$$ND = 2/(e\epsilon_0 m)$$

From the linear portion of the Mott–Schottky plots (Fig. S11 and Fig. 8), the slope values (m) corresponding to POSS-NH₂, POM(W)-POSS, POM(Mo)-POSS and POM(MoV)-POSS were found to be 1.25, 3×10^{-3} , 2.1×10^{-2} and 1.6×10^{-2} respectively. These results clearly indicate that integration of double metal site POM with POSS facilitates charge transport in line with PL studies and the enhanced photocatalytic H₂ production activity.

S.No.	Catalyst name	Reaction condition	Co- catalyst	Amount of H ₂ produced	pН	ref
1	POM(MoV)-POSS	Light source: 300 W Xe lamp, Sacrificial agent: TEOA Light intensity: 200mW/cm ²	Nil	485 μmol g ⁻¹ h ⁻¹	11.21	
2	POM(Mo)-POSS	Light source: 300 W Xe lamp, Sacrificial agent: TEOA Light intensity: 200mW/cm ²	Nil	371 μmol g ⁻¹ h ⁻¹	11.8	This work
3	POM(W)-POSS	Light source: 300 W Xe lamp, Sacrificial agent: TEOA Light intensity: 200mW/cm ²	Nil	302 μmol g ⁻¹ h ⁻¹	12.41	
4.	(HTEA) ₂ {[Na(TEA) ₂]H[SiW ₁₂ O ₄₀]}· 5H ₂ O	Light source: 300 W Xe lamp, Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	7.435 μmol g ⁻¹ h ⁻¹		
5.	(HTEA) ₂ {[Na(TEA) ₂][PW ₁₂ O ₄₀]}· 4H ₂ O	Light source: 300 W Xe lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	7.838 μmolg ⁻¹ h ⁻¹	Nil	4
6.	$(HTEA)_{2}\{[Na(TEA)_{2}]H[GeW_{12}O_{40}]\} \cdot 4H_{2}O$	Light source: 300 W Xe lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	7.375 μmol g ⁻¹ h ⁻¹		
7.	[Cu(en) ₂] ₄ [PNb ₁₂ O ₄₀ (VO) ₆].(OH) ₅ . 8H ₂ O	Light source: 125W Hg lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	44.35 mol g ⁻¹ h ⁻¹		

Table S3. Compar	rison of hydrogen	production for	POM based	materials
------------------	-------------------	----------------	-----------	-----------

8.	[Cu(en) ₂] ₄ [PNb ₁₂ O ₄₀ (VO) ₆].(OH) ₅ . 8H ₂ O	Light source: 300 W Xe lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	10.31 mmol g ⁻¹ h ⁻¹	Nil	5
9.	$[Cu(enMe)_2]_4[PNb_{12}O_{40}(VO)_6].$ (OH) ₅ .6H ₂ O	Light source: 125W Hg lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	43.86 mmol g ⁻¹ h ⁻¹		
10.	$[Cu(enMe)_2]_4[PNb_{12}O_{40}(VO)_6].$ (OH) ₅ .6H ₂ O	Light source: 300 W Xe lamp Sacrificial agent: CH ₃ OH Light intensity: 200mW/cm ²	Pt	10.45 mmol g ⁻¹ h ⁻¹		
11.	$[Cu(en)_2]_{11}K_4Na_2[KNb_{24}O_{72}H_9]_2 \cdot 120H_2O$	Light source: 500 W Xe lamp. Sacrificial agent: TEA Light intensity: n.a.	(CoIII(d mgH) ²⁻ pyCl	13.2 μmol g ⁻¹ h ⁻¹	Nil	6
12.	$[Cu(en)_2]_{11}K_4Na_2[KNb_{24}O_{72}H_9]_2$ 120H ₂ O	Light source: 125 W mercury lamp Sacrificial agent: TEA Light intensity: n.a.	(CoIII(d mgH) ²⁻ pyCl	1000 μmol h ⁻¹ g ⁻¹		
13.	K ₁₀ [Nb ₂ O ₂ (H ₂ O) ₂]-[SiNb ₁₂ O ₄₀] ₃ 12H ₂ O	Light source: 300 W Xe lamp Sacrificial agent: CH ₃ OH Light intensity: n.a.	Pt	2100 µmol h ⁻¹ g ⁻¹	Nil	7
14.	K ₁₀ [Nb ₂ O ₂ (H ₂ O) ₂]-[SiNb ₁₂ O ₄₀] ₃ 12H ₂ O	Light source:300 W Xe lamp pure water. Light intensity: 200mW/cm ²	NiO	222 μmol h ⁻¹ g ⁻¹		
15.	K ₇ [Co ^{III} Co ^{II} (H ₂ O)W ₁₁ O ₃₉]	Light source: 3 W LED lamp Sacrificial agent: TEOA/H ₂ O Light intensity: n.a.	Pt	13395 μmol h ⁻¹ g ⁻¹	7.0	8
16.	(NH ₄)7H[ZnCo ^{II} (H ₂ O)W ₁₁ O ₃₉]	Light source: 3 W LED lamp Sacrificial agent:TEOA/H ₂ O Light intensity: n.a.	Pt	5301 μmolh ⁻¹ g ⁻¹		

1/.	$[K_6[SIC0^{-1}(11_2O) W_{11}O_{39}]$		I FL	4014		
				11 1 1		
		LED lamp		µmol n ⁻¹ g ⁻¹		
		Sacrificial				
		agent:TEOA/H ₂ O				
		Light intensity: n.a.				
18.	$K_5[PCo^{II}(H_2O)W_{11}O_{39}]$	Light source: 3 W	Pt	5157		
		LED lamp		µmol h ⁻¹ g ⁻¹		
		Sacrificial agent:				
		TEOA/H ₂ O				
		Light intensity: n.a.				
19.	$K_{5}[Co^{III}W_{12}O_{40}]$	Light source: 3 W	Pt	4579		
		LED lamp		µmolh ⁻¹ g ⁻¹		
		Sacrificial agent:				
		TEOA/H ₂ O				
		Light intensity: n.a.				
20.	Na ₃ PW ₁₂ O ₄₀	Light source: 3 W	Pt	0 μmol h ⁻¹ g ⁻¹		
		LED lamp				
		Sacrificial				
		agent:TEOA/H ₂ O				
		Light intensity: n.a.				
21.	$Rb_8K_2[{Ru_4O_4(OH)_2(H_2O)_4}-$	Light source: Xe	Nil	TON	7.2	9
	$(g-SiW_{10}O_{36})_2$]	lamp, 420–520 nm		8 x10 ⁻² s ⁻¹		
		Sacrificial agent:				
		$[Ru(bpy)3]^{2+}$				
		Light intensity: n.a.				
22.	$C_{89}[(gPW_{10}O_{36})_2Ru^{IV}_4O_5(OH)]$	Light source: Xe	Nil	TOF	5.8	10
	$(OH_2)_4$	lamp (420–520 nm).		0.13 s ⁻¹		
		Sacrificial agent:				
		[Ru(bpv) ₃]Cl ₂				
		Light intensity: n a				
19. 20. 21. 22.	$K_{5}[Co^{III}W_{12}O_{40}]$ $Na_{3}PW_{12}O_{40}$ $Rb_{8}K_{2}[\{Ru_{4}O_{4}(OH)_{2}(H_{2}O)_{4}\}-(g-SiW_{10}O_{36})_{2}]$ $Cs_{9}[(gPW_{10}O_{36})_{2}Ru^{IV}_{4}O_{5}(OH)(OH_{2})_{4}]$	LED lamp Sacrificial agent: TEOA/H ₂ O Light intensity: n.a. Light source: 3 W LED lamp Sacrificial agent: TEOA/H ₂ O Light intensity: n.a. Light source: 3 W LED lamp Sacrificial agent:TEOA/H ₂ O Light intensity: n.a. Light source: Xe lamp, 420–520 nm Sacrificial agent: [Ru(bpy)3] ²⁺ Light intensity: n.a. Light source: Xe lamp (420–520 nm), Sacrificial agent: [Ru(bpy)3]Cl ₂ Light intensity: n.a.	Pt Pt Nil Nil	μmol h ⁻¹ g ⁻¹ 4579 μmolh ⁻¹ g ⁻¹ 0 μmol h ⁻¹ g ⁻¹ TON 8 x10 ⁻² s ⁻¹ TOF 0.13 s ⁻¹	7.2	9

References:

- S. G. Babu, R. Vinoth, D. P. Kumar, M. V. Shankar, H.-L. Chou, K. Vinodgopal and B. Neppolian, *Nanoscale*, 2015, 7, 7849-7857.
- Y. Zhou, L. Qin, C. Yu, T. Xiong, L. Zhang, W. Ahmad and H. Han, *RSC Adv.*, 2014, 4, 54928-54935.
- 3. A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann and F. Peters, *Angew. Chem., Int. Ed.,*, 1998, **37**, 3359-3363.
- 4. Y. Nie, W. Chen, Z. Liu and E. Wang, *Inorg. Chem. Commun.*, 2015, **61**, 184-186.
- 5. J.-Q. Shen, Y. Zhang, Z.-M. Zhang, Y.-G. Li, Y.-Q. Gao and E.-B. Wang, *Chem. Commun.*, 2014, **50**, 6017-6019.
- Z.-L. Wang, H.-Q. Tan, W.-L. Chen, Y.-G. Li and E.-B. Wang, *Dalton Trans.*, 2012, 41, 9882-9884.
- Z. Zhang, Q. Lin, D. Kurunthu, T. Wu, F. Zuo, S.-T. Zheng, C. J. Bardeen, X. Bu and P. Feng, J. Am. Chem. Soc., 2011, 133, 6934-6937.
- J. Zhao, Y. Ding, J. Wei, X. Du, Y. Yu and R. Han, *Int. J. Hydrog. Energy*, 2014, 39, 18908-18918.
- F. Puntoriero, G. La Ganga, A. Sartorel, M. Carraro, G. Scorrano, M. Bonchio and S. Campagna, *Chem. Commun.*, 2010, 46, 4725-4727.
- C. Besson, Z. Huang, Y. V. Geletii, S. Lense, K. I. Hardcastle, D. G. Musaev, T. Lian, A. Proust and C. L. Hill, *Chem. Commun.*, 2010, 46, 2784-2786.