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Fig. S1 1H NMR spectrum of Lu-1 (400 MHz, CDCl3). 

 



  

  

Fig. S2 1H NMR spectrum of Lu-2 (400 MHz, CDCl3). 

  



 

Fig. S3 1H NMR spectrum of Lu-3 (400 MHz, CDCl3). 

  



 

Fig. S4 1H NMR spectrum of Lu-4 (400 MHz, CDCl3). 

  



 

Fig. S5 19F NMR spectrum of Lu-1 (377 MHz, CDCl3). 

  

  



 

Fig. S6 19F NMR spectrum of Lu-2 (377 MHz, CDCl3). 

  



 

Fig. S7 19F NMR spectrum of Lu-3 (471 MHz, CDCl3). 

  



 

Fig. S8 19F NMR spectrum of Lu-4 (471 MHz, CDCl3). 

 

    



 

Fig. S9 13C NMR spectrum of Lu-1 (126 MHz, CDCl3). 

 

  



 

Fig. S10 13C NMR spectrum of Lu-2 (126 MHz, CDCl3). 

  



 

Fig. S11 13C NMR spectrum of Lu-3 (126 MHz, CDCl3). 

  



 

Fig. S12 13C NMR spectrum of Lu-4 (126 MHz, CDCl3). 

  



 

Fig. S13 HR ESI-MS spectrum of Lu-1. Inset presents the simulated spectrum. 
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Fig. S14 HR ESI-MS spectrum of Lu-2. Inset presents the simulated spectrum. 
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Fig. S15 HR ESI-MS spectrum of Lu-3. Inset presents the simulated spectrum. 
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Fig. S16 HR ESI-MS spectrum of Lu-4. Inset presents the simulated spectrum. 
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Fig. S17 Normalized FT-IR spectrum of Lu-1. 

  



 

Fig. S18 Normalized FT-IR spectrum of Lu-2. 
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Fig. S19 Normalized FT-IR spectrum of Lu-3. 
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Fig. S20 Normalized FT-IR spectrum of Lu-4. 

 

  

C=O: 1759 cm-1



 

 

 

 
Fig. S21 (a) UV/Vis absorption spectra and (b) normalized emission spectra (excited at Soret bands) 

of M-1 (M = Gd, Pd, Zn) in degassed toluene at room temperature. 

  

b)

a) 



 

Fig. S22 a) The phosphorescence spectra of Gd-1 with BPEA in different concentration in degassed 

toluene; b) the Stern–Volmer plot of Gd-1 with BPEA in degassed toluene. ([Gd-1] = 0.5 μM, λex = 

561 nm) 
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Fig. S23 a) The phosphorescence spectra of Pd-1 with BPEA in different concentration in degassed 

toluene; b) the Stern–Volmer plot of Pd-1 with BPEA in degassed toluene. ([Pd-1] = 0.5 μM, λex = 

561 nm) 
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Fig. S24 a) The emission and b) decay (λem = 715 nm) spectra of Zn-1 with BPEA in different 

concentration in degassed toluene; c) the Stern–Volmer plot of Zn-1 with BPEA in degassed toluene 

(Ksv is determined according to τ0/τ = 1 + KSV[BPEA], due to the weak phosphorescence of Zn-1). 

([Zn-1] = 0.5 μM, λex = 561 nm) 
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Fig. S25 a) The phosphorescence spectra of Lu-2 with BPEA in different concentration in degassed 

toluene; b) the Stern–Volmer plot of Lu-2 with BPEA in degassed toluene. ([Lu-2] = 0.5 μM, λex = 

561 nm) 
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Fig. S26 a) The phosphorescence spectra of Lu-3 with rubrene in different concentration in 

degassed toluene; b) the Stern–Volmer plot of Lu-3 with rubrene in degassed toluene. ([Lu-3] = 0.5 

μM, λex = 639 nm) 
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Fig. S27 a) The phosphorescence spectra of Lu-4 with rubrene in different concentration in 

degassed toluene; b) the Stern–Volmer plot of Lu-4 with rubrene in degassed toluene. ([Lu-4] = 0.5 

μM, λex = 659 nm) 
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Fig. S28 a) Upconverted fluorescence spectra of Gd-1/BPEA at different excitation power; 

b) the double logarithmic plots of upconversion intensity at 480 nm measured as a function 

of power density of a 561 nm incident laser for Gd-1/BPEA in degassed toluene (the 

threshold excitation power density = 230 mW·cm-2). ([Gd-1] = 0.5 μM, [BPEA] = 60 μM, λex = 

561 nm) 
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Fig. S29 a) Upconverted fluorescence spectra of Pd-1/BPEA at different excitation power; b) 

the double logarithmic plots of upconversion intensity at 480 nm measured as a function of 

power density of a 561 nm incident laser for Pd-1/BPEA in degassed toluene (the threshold 

excitation power density = 150 mW·cm-2). ([Pd-1] = 0.5 μM, [BPEA] = 60 μM, λex = 561 nm) 
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Fig. S30 a) Upconverted fluorescence spectra of Zn-1/BPEA at different excitation power; b) 

the double logarithmic plots of upconversion intensity at 480 nm measured as a function of 

power density of a 561 nm incident laser for Zn-1/BPEA in degassed toluene (the threshold 

excitation power density = 150 mW·cm-2). ([Zn-1] = 0.5 μM, [BPEA] = 60 μM, λex = 561 nm) 
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Fig. S31 a) Upconverted fluorescence spectra of Lu-2/BPEA at different excitation power; b) 

the double logarithmic plots of upconversion intensity at 480 nm measured as a function of 

power density of a 561 nm incident laser for Lu-2/BPEA in degassed toluene (the threshold 

excitation power density = 120 mW·cm-2). ([Lu-2] = 0.5 μM, [BPEA] = 60 μM, λex = 561 nm) 
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Fig. S32 Decay spectra of the delayed fluorescence boserved in TTA upconversion systems 

with Lu-2 and M-1 (M = Gd, Pd, Zn) as sensitizers and BPEA as acceptor in degassed toluene. 

(Excited by a 561 nm laser, λem = 480 nm) 
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Fig. S33 Decay spectra of the delayed fluorescence boserved in TTA upconversion systems 

with Lu-3 and Lu-4 as sensitizers and rubrene as acceptor in degassed toluene. (Excited by 

639 and 659 nm lasers for Lu-3/rubrene and Lu-4/rubrene systems respectively, λem = 561 

nm) 
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Fig. S34 Upconversion efficiencies (ΦUC) as a function of BPEA concentration with the sensitizer at 

fixed concentration (0.5 μM) in degassed toluene.(λex = 561 nm, 480 mW·cm-2) 

  



 

Fig. S35 Stability of the TTA upconversion emission of different upconversion systems upon 

continuous irradiation with excitation power density of 480 mW·cm−2 in degassed toluene. 

(Systems with Lu-3 and Lu-4 as sensitizers were excited at 639 and 659 nm respectively, while 

others at 561 nm) 
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Fig. S36 (a) Transmission electron microscopy (TEM) image and (b) size distribution of UC-NMs 

loaded with Lu-2/BPEA at room temperature. 
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Fig. S37 (a) Major and (b) minor axis lengths distributions of UC-MSNs loaded with Lu-1/BPEA at 

room temperature measured by TEM. 

  

a) 

b) 



 
Fig. S38 (a) Transmission electron microscopy (TEM) image at 25kx magnification, (b) pore channel 

structure in bright field (left) and dark field (right) TEM image at 60kx magnification, (c) Major axis 

lengths distribution and (d) minor axis lengths distribution of UC-MSNs loaded with Lu-2/BPEA at 

room temperature. 
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Fig. S39 Dynamic light scattering (DLS) of Lu-2/BPEA loaded UC-NM. 
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Fig. S40 Dynamic light scattering (DLS) of Lu-2/BPEA loaded UC-MSN. (2744 and 5858 nm) 

  



 

Fig. S41 Normalized absorption (solid) and emission (dash) spectra (λex = 561 nm, 480 mW·cm-2) 

of UC-NMs loaded with Lu-2/BPEA pair in water under ambient atmosphere. 

  



 

Fig. S42 Normalized absorption (solid) and emission (dash) spectra (λex = 561 nm, 480 mW·cm-2) 

of UC-MSNs loaded with Lu-2/BPEA pair in water under ambient atmosphere. 

  



 

Fig. S43 Confocal fluorescence image of living HeLa cell with BPEA only (no sensitizer) by 455 - 525 

nm channel under laser excitation at (A) 405 nm (red, prompt fluorescence); (B) 543 nm (green, 

upconverted fluorescence); and (C) merged images of (A) and (B). Row a, b: image of (a) NMs 

(incubated for 15 min) and (b) MSNs (incubated for 4 h). (Scale bar presents 20 μm) 

 


