Electronic Supplementary Information

Novel cone-like ZnO mesocrystal with coexposed $(10^{\overline{1}}1)$ and $(000^{\overline{1}})$ facets and enhanced photocatalytic activity

Shuhua Liang,^{a*} Xufeng Gou,^a Jie Cui,^a Yongguang Luo,^b Hongtao Qu,^b Te Zhang,^b Zhimao Yang,^c Qing Yang,^a and Shaodong Sun^{a*}

^a Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, ShaanXi, People's Republic of China. E-mail: liangsh@xaut.edu.cn, sdsun@xaut.edu.cn.

^b Yunnan Chihong Zinc&Germanium Co., Ltd., Qujing 655000, Yunnan, People's Republic of China.

^c School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Center of Suzhou Nano Science and Technology, Xi'an Jiaotong University, Xi'an 710049, ShaanXi, People's Republic of China.

Figure S1. XRD pattern of as-prepared cone-like ZnO mesocrystals (Sample A).

Figure S2. The size distribution diagrams of cone-like ZnO mesocrystals (Sample A).

Figure S3. TEM image and SAED pattern of the bolt-like ZnO architecture (Volume of water = 5

mL).

Figure S4. TEM image of ZnO synthesized in pure ethanol system.

Figure S5. TEM images of the products synthesized in different amount of water (Volume of ethanol = 30 mL) at 70 °C.

Figure S6. TEM images of the products synthesized in different amount of water (Volume of ethanol = 30 mL) at 65 °C.

Figure S7. TEM images of the products synthesized in different amount of water (Volume of ethanol = 30 mL) at $60 \text{ }^{\circ}\text{C}$.

Figure S8. TEM images of the products synthesized in different amount of water (Volume of ethanol = 30 mL) at 55 °C.

Figure S9. DSC results of ZnO products (water = 0.5 mL, ethanol = 30 mL) synthesized at different temperature.

Figure S10. TEM image of the products synthesized in different amount of water (Volume of ethanol = 30 mL, Temperature = 75 °C) at short reaction time (1 min).

Figure S11. The models of the isolated ZnO (0001) surface (a) and the relaxed ZnO (0001) surface with the molecules of H_2O (b) and C_2H_5OH (c) adsorbed to it.

Figure S12. The models of the isolated ZnO $(000^{\overline{1}})$ surface (a) and the relaxed ZnO $(000^{\overline{1}})$ surface with the molecules of H₂O (b) and C₂H₅OH (c) adsorbed to it.

Figure S13. The models of the isolated ZnO ($10\overline{1}0$) surface (a) and the relaxed ZnO ($10\overline{1}0$) surface with the molecules of H₂O (b) and C₂H₅OH (c) adsorbed to it.

Figure S14. The models of the isolated ZnO $(10^{\overline{1}}1)$ surface (a) and the relaxed ZnO $(10^{\overline{1}}1)$ surface with the molecules of H₂O (b) and C₂H₅OH (c) adsorbed to it.

Figure S15. The size distribution diagrams of Sample A (a) and Sample B (b).

Figure S16. A blank experiment under UV light irradiation.

Figure S17. The cycle experiment of Sample A.

Figure S18. Photocaltalytic results of the Sample A ($S_{mesocrystal}$) and cone-like nanocrystals ($S_{nanocrystal}$).

Figure S19. TEM images of the photodeposition products synthesized in H_2PtCl_6 / triethanolamine and CoCl₂/NaIO₃ solution, respectively.

Synthesis. 0.03 g ZnO powder and a calculated amount of metal precursors (5 wt%) were mixed in 50 mL deionized water. The suspension was then irradiated by a 300W Xe lamp under continuous stirring. After 3 h photo-deposition, the suspension was filtered, washed with deionized water and ethanol for more than three times, and finally dried at 60 °C for overnight.

Sample	Concentration of	Reaction	Reaction	The volume of ethanol	The volume of water
	Zn(CH ₃ COO) ₂	temperature	time		
А	0.15 mM	70 °C	15 min	30 mL	0.5 mL
В	0.15 mM	70 °C	15 min	30 mL	1.0 mL
С	0.15 mM	70 °C	15 min	30 mL	2.0 mL
D	0.15 mM	70 °C	15 min	30 mL	3.0 mL
Е	0.15 mM	70 ℃	15 min	30 mL	5.0 mL
F	0.15 mM	70 °C	15 min	30 mL	10 mL
G	0.15 mM	70 ℃	15 min	30 mL	15 mL
J	0.15 mM	70 °C	15 min	30 mL	20 mL

Table S1. The detailed experimental conditions of the products synthesized at 70 °C.

Table S2. The detailed experimental conditions of the products synthesized at 65 °C.

Sample	Concentration of	Reaction	Reaction	The volume of ethanol	The volume of water
	Zn(CH ₃ COO) ₂	temperature	time		
А	0.15 mM	65 ℃	15 min	30 mL	0.5 mL
В	0.15 mM	65 °C	15 min	30 mL	1.0 mL
С	0.15 mM	65 °C	15 min	30 mL	2.0 mL
D	0.15 mM	65 °C	15 min	30 mL	3.0 mL
Е	0.15 mM	65 °C	15 min	30 mL	5.0 mL
F	0.15 mM	65 °C	15 min	30 mL	10 mL
G	0.15 mM	65 °C	15 min	30 mL	15 mL
J	0.15 mM	65 °C	15 min	30 mL	20 mL

Sample	Concentration of	Reaction	Reaction	The volume of ethanol	The volume of water
	Zn(CH ₃ COO) ₂	temperature	time		
А	0.15 mM	60 ℃	15 min	30 mL	0.5 mL
В	0.15 mM	60 °C	15 min	30 mL	1.0 mL
С	0.15 mM	60 °C	15 min	30 mL	2.0 mL
D	0.15 mM	60 °C	15 min	30 mL	3.0 mL
Е	0.15 mM	60 °C	15 min	30 mL	5.0 mL
F	0.15 mM	60 °C	15 min	30 mL	10 mL
G	0.15 mM	60 °C	15 min	30 mL	15 mL
J	0.15 mM	60 °C	15 min	30 mL	20 mL

Table S3. The detailed experimental conditions of the products synthesized at 60 °C.

Table S4. The detailed experimental conditions of the products synthesized at 55 °C.

Sample	Concentration of	Reaction	Reaction	The volume of ethanol	The volume of water
	Zn(CH ₃ COO) ₂	temperature	time		
А	0.15 mM	55 °C	15 min	30 mL	0.5 mL
В	0.15 mM	55 ℃	15 min	30 mL	1.0 mL
С	0.15 mM	55 ℃	15 min	30 mL	2.0 mL
D	0.15 mM	55 ℃	15 min	30 mL	3.0 mL
Е	0.15 mM	55 ℃	15 min	30 mL	5.0 mL
F	0.15 mM	55 ℃	15 min	30 mL	10 mL
G	0.15 mM	55 ℃	15 min	30 mL	15 mL
J	0.15 mM	55 ℃	15 min	30 mL	20 mL

Sautoco	Adsorption energy E_a (eV/molecule)			
Surface	H ₂ O (water)	C ₂ H ₅ OH (ethanol)		
(0001)	-0.32	-0.43		
(0001)	-0.49	-0.12		
(1010)	-1.03	-0.35		
$(10\bar{1}1)$	-0.09	-1.13		

Table S5. The adsorption energy (E_a) for H₂O and C₂H₅OH molecules adsorbed on the different ZnO surfaces

Calculation method

Our first-principles calculations were based on DFT implemented in the Vienna ab initio simulation package (VASP) code.¹ The projected augmented wave (PAW) method² within the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE)³ was used. To separate the interactions between neighboring slabs, the periodic boundary conditions with a relatively large vacuum space of 20 Å were applied. The energy cutoff and convergence criteria for energy and force was set to be 450 eV, 10^{-4} eV, and 0.01 eV/Å, respectively. During the optimization, $3 \times 3 \times 1 \text{ K-point}^4$ was adopted, while $5 \times 5 \times 1$ was used for total energy calculations.

¹ G. Kresse and J. Hafner, Phys. Rev. B 1993, 47, 558.

² P. E. Blöchl, Phys. Rev. B 1994, 50 17953.

³ J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

⁴ H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.