Ionic liquid-supported 3DOM Silica for efficient heterogeneous oxidative desulfurization

Xiao Chen,^a Ming Zhang,^{b*} Yanchen Wei,^a Hongping Li,^b Jiaqi Liu,^b Qi Zhang,^{a*}

Wenshuai Zhu, ^{a*} Huaming Li,^b

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang

212013, P. R. China

^b Institute for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China

*Corresponding author: Tel.: +86-511-88799500; Fax: +86-511-88791708;

E-mail address: zm@ujs.edu.cn (M. Zhang); qzhang@ujs.edu.cn (Q. Zhang); zhuws@ujs.edu.cn (W.S. Zhu);

Fig. S1 EDS elemental mapping images of the IL-3DOM SiO_2 catalyst.

T 11 C1	α (1)	• 1 .•	1 10	• ,•	C	C (1	
Table NT	(atalytic	oxidative	desulti	irization	nertormance	of other	fungsten-
Tuble D1.	Cuturytic	OMuulive	uosuin	ai iZution	periormanee	or other	tungsten

Entry	Catalyst	O/S molar	t/min	Sulfur	Recycle	Ref.
		ratio		removal/	times	
				%		
1	C ₄ -IL@OMS	3	60	99.5	7	1
2	Sw20-3.0	4	15	97.1	5	2
3	25wt% WO ₃ /SBA-15	10	20	99	5	3
4	15% HPW-SPC	3	120	96.3	4	4
5	PW ⁻ -H ₃ N ⁺ -SBA-15	62	120	100	/	5
6	0.2W-SiO ₂	3	30	100	9	6
7	[Eu(PW ₁₁ O ₃₉) ₂] ¹¹⁻ @SBA-15	12	120	92	10	7
8	0.25W-CeO ₂ -400	5	50	99.2	3	8
9	550-WO ₃ -SiO ₂	3	70	100	6	9
10	HPW/SiO ₂ -Al ₂ O ₃ (50)	2	120	97	3	10
11	LaW10/IL-SiO2	5	25	>99	10	11
12	HPW-TiO ₂ -SiO ₂ $(1:3)$	12	120	96	3	12
13	IL-3DOM SiO ₂	3	40	100	17	This work

containing mesoporous silica systems reported.

- 1. M. Zhang, M. Li, Q. Chen, W. Zhu, H. Li, S. Yin, Y. Li and H. Li, *RSC Adv.*, 2015, 5, 76048-76056.
- 2. D. Shen, Y. Dai, J. Han, L. Gan, J. Liu and M. Long, *Chem. Eng. J.*, 2018, **332**, 563-571.
- 3. J. González, J. A. Wang, L. F. Chen, M. E. Manríquez and J. M. Dominguez, *J. Phys. Chem. C*, 2017, **121**, 23988-23999.
- 4. B. Li, Z. Liu, C. Han, W. Ma and S. Zhao, J. Colloid Interface Sci., 2012, 377, 334-341.
- 5. X. N. Pham, D. L. Tran, T. D. Pham, Q. M. Nguyen, V. T. T. Thi and H. D. Van, *Adv. Powder Technol.*, 2018, **29**, 58-65.
- W. Zhu, Q. Gu, J. Hu, P. Wu, S. Yin, F. Zhu, M. Zhang, J. Xiong and H. Li, *J. Porous Mater.*, 2015, 22, 1227-1233.
- S. O. Ribeiro, L. S. Nogueira, S. Gago, P. L. Almeida, M. C. Corvo, B. d. Castro, C. M. Granadeiro and S. S. Balula, *Appl. Catal.*, *A*, 2017, 542, 359-367.
- Y. Li, M. Zhang, W. Zhu, M. Li, J. Xiong, Q. Zhang, Y. Wei and H. Li, *RSC Adv.*, 2016, 6, 68922-68928.
- S. Xun, W. Zhu, F. Zhu, Y. Chang, D. Zheng, Y. Qin, M. Zhang, W. Jiang and H. Li, *Chem. Eng. J.*, 2015, 280, 256-264.
- 10. X.M. Yan, Z. Mei, P. Mei and Q. Yang, J. Porous Mater., 2014, 21, 729-737.
- 11. Y. Chen and Y.F. Song, *ChemPlusChem*, 2014, **79**, 304-309.
- 12. X.M. Yan, P. Mei, L. Xiong, L. Gao, Q. Yang and L. Gong, *Catal. Sci. Technol.*, 2013, **3**, 1985.

The ionic liquid that prepared via ion exchange method. The content of C, H, N

element in the precursor is determined through elemental analyzer. The results and the

theoretical value are shown as follows (Table S2).

Table S2. Elemental composition of the $[C_{16}mim]_6H_2W_{12}O_{40}$ in wt%.

Element	С	Н	N
Actual value/%	30.15	5.08	3.33
Theoretical value/%	30.71	5.07	3.55

Table S3. The theoretical and actual content of the IL in the hybrid materials.

Entry	Theoretical value (wt%)	Actual value ^a (wt%)
1	24.3	17.1

^a IL content based on the tungsten content measured by ICP-OES.