Electronic Supplementary Information

Synthesis of Cd(II) based 1D coordination polymer by *in situ* ligand generation and fabrication of photosensitive electronic device

Basudeb Dutta,^a Rajkumar Jana,^b Chittaranjan Sinha,^c Partha Pratim Ray,^{*b} and Mohammad Hedayetullah Mir^{*a} ^aDepartment of Chemistry, Aliah University, New Town, Kolkata 700 156, India. Email: chmmir@gmail.com ^bDepartment of Physics, Jadavpur University, Jadavpur, Kolkata 700 032, India. Email: partha@phys.jdvu.ac.in ^cDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India.

Fig. S1 A view of 3D supramolecular aggregate of the compound 1.

Formula	$C_{34}H_{30}CdN_2O_6S_2(1)$
fw	739.13
crystsyst	monoclinic
space group	$P2_1/n$
<i>a</i> (Å)	7.7317(3)
<i>b</i> (Å)	17.7115(8)
<i>c</i> (Å)	23.3846(10)
a (deg)	90
β (deg)	99.182(2)
γ (deg)	90
$V(Å^3)$	3161.3(2)
Ζ	4
$D_{\text{calcd}}(\text{g/cm}^3)$	1.555
μ(mm ⁻¹)	0.872
λ(Å)	0.71073
data[$I > 2\sigma(I)$]/params	6201/416
GOF on F^2	1.089
final <i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	R1 = 0.0280
	wR2 = 0.0664
$a \mathbf{R} 1 = \mathbf{\Sigma} \mathbf{E} - \mathbf{E} / \mathbf{\Sigma} \mathbf{E} + b \mathbf{w}$	$w \mathbf{R} 2 = [\Sigma w (E^2 - E^2)^2 / \Sigma w (E^2)^2]^{1/2}$

 Table S1
 Crystal data and refinement parameters for compound 1

R1 = $\Sigma ||F_0|$ | $F_c ||/\Sigma |F_0|$, ^b wR2 = $[\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$

Cd01-O1	2.390(2)	O1-Cd01-N1	87.49(7)	O4a -Cd01-O5a	53.20(6)
Cd01-N1	2.304(2)	O1-Cd01-O5a	82.87(6)	O1-Cd01-O3	79.31(7)
Cd01-O2	2.273(2)	O2-Cd01-N1	96.39(8	O1-Cd01-C21	105.78(7)
Cd01-O4a	2.532(2)	O2-Cd01-O5a	143.91(6)	O2-Cd01-O3	53.33(7)
Cd01-O3	2.531(2)	O3-Cd0-C21	26.52(7)	O2-Cd01-C21	26.91(6)
Cd01-O5a	2.358(2)	O6-Cd01-N1	173.39(8)	O3-Cd01-O6	87.30(8)
Cd01-O6	2.322(2)	O6-Cd01-O5a	84.39(7)	O3-Cd01-O4a	142.89(6)
O1 -Cd01-O2	132.64(6)	N1-Cd01-O5a	90.60(7)	O6-Cd01-C21	86.90(7)
N1-Cd01-C21	98.71(7)	O1-Cd01-O6	87.61(7)	O2-Cd01-O6	90.19(8)
C21-Cd01-O4a	116.82(6)	O1-Cd01-O4a	135.73(6)	O2-Cd01-O4a	90.76(6)
O3 -Cd01-N1	96.14(8)	O3-Cd01-O5a	160.62(7)	O6 -Cd01-O4a	83.36(7)
N1-Cd01 -O4a	97.10(7)	C21-Cd01-O5a	167.47(6)	Cd01-O3-C21	86.31(14)

Table S2 Selected bond lengths and bond angles in 1

Symmetry Code: a = -1/2+x, 3/2-y, -1/2+z; b = 1/2+x, 3/2-y, 1/2+z

	D-H…A	D-H (Å)	H···A (Å)	$D \cdots A(Å)$	<d-h····a (°)<="" th=""></d-h····a>
Compound 1	O(6)-H(6A)····O(5)	0.73(4)	2.02(4)	2.727(3)	164(4)
I. I. I. I.					
	O(6)-H(6B)····O(1)	0.81(4)	2.17(4)	2.885(3)	149(3)

 Table S3 Hydrogen bonding interactions in 1

Table S4 C-H··· π interactions in 1

	$C-H \rightarrow ring(j)$		C-H···R	C···R	
		distance (Å)	angle(deg)	distance (Å)	
Compound 1	$C(30)-H(30)\rightarrow R(1)$	2.85	139.2	3.609	
	$C(11)-H(11)\rightarrow R(2)$	2.70	144.3	3.494	
D(i) denotes the	i the ring: $\mathbf{P}(1)$ -	- C(2)/C(0)/C(1)	(0)/C(11)/C(12)/	(C(12), D(2)) =	
$R(J)$ denotes the J-th Hig. $R(T) = C(\delta)/C(9)/C(T0)/C(T1)/C(T2)/C(T3), R(2) = C(\delta)/C(9)/C(T0)/C(T3)/C(T3), R(2) = C(\delta)/C(9)/C(T3)/C(T3)/C(T3), R(2) = C(\delta)/C(9)/C(T3)/C(T3)/C(T3)/C(T3), R(2) = C(\delta)/C(9)/C(T3)/$					
C(22)/C(23)/C(24)/C(25)/C(26)/C(27)					

Table S5 $\pi \cdots \pi$ interactions in **1**

	ring(j)→ring(j)	R…R distance (Å)
Compound 1	$R(3) \rightarrow R(4)$	3.627

R(j) denotes the j-th ring: R(3) = C(1)/C(2)/C(3)/C(4)/C(5)/N(1); R(4)= C(12)/C(13)/C(14)/C(15)/C(16)/C(17).

Compound 1					
МО	Energy (eV)	Cd	Ligand		
LUMO+10	-0.61	0	100		
LUMO+9	-0.83	0	100		
LUMO+8	-0.85	0	100		
LUMO+7	-1.12	1	99		
LUMO+6	-1.29	1	99		
LUMO+5	-1.33	0	100		
LUMO+4	-1.6	0	100		
LUMO+3	-1.71	1	99		
LUMO+2	-1.83	1	99		
LUMO+1	-1.89	0	100		
LUMO	-2.39	0	100		
НОМО	-6.04	0	100		
HOMO-1	-6.07	0	100		
НОМО-2	-6.11	0	100		
НОМО-3	-6.21	0	100		
HOMO-4	-6.3	0	100		
НОМО-5	-6.69	1	99		
HOMO-6	-6.78	1	99		
HOMO-7	-6.93	0	100		
HOMO-8	-7.07	0	100		
НОМО-9	-7.15	0	100		
HOMO-10	-7.18	0	100		
Key transition for both the compounds: HOMO-1→LUMO, Nature of transition : ILCT					

Table S6 DFT table of the compound 1

Excitation	Wavelength	Oscillation	Key transitions	Nature of
energy (eV)	Thro. (nm)	frequency (f)		transitions
3.3605	368.94	0.4831	(62%) HOMO-1→LUMO	ILCT
3 3985	364.82	0.0704	(79%) HOMO-2→LUMO+3	ILCT
5.5900	201.02	0.0701		
3.7297	332.42	0.0223	(84%) HOMO-3→LUMO+1	ILCT
3.8054	325.81	0.1293	(83%) HOMO-4→LUMO+1	ILCT
3.8864	319.02	0.0676	(27%) HOMO→LUMO+4	ILCT
3.8926	318.51	0.0993	(38%) HOMO-2→LUMO+4	ILCT
4.1765	296.86	0.0727	(40%) HOMO- \rightarrow LUMO+5	ILCT

Table S7 Calculated transitions and their assignments for the compound 1

Fig. S2 FT-IR of the compound 1.

Fig. S3 TGA plot of complex 1 measured under N_2 atmosphere.

Fig. S4 Powder X-ray diffraction patterns of simulated 1 (black) and as-synthesized 1 (red).

Fig. S5 Fluorescence emission spectra of 4-nvp ligand and compound 1.

Fig. S6 Decay profile of 4-nvp ligand and compound 1.