Electronic Supporting Information

Highly efficient Pb(II) and Cu(II) removal using hollow Fe₃O₄@PDA

nanoparticles with excellent application capability and reusability

Ning Wang^{a,b}, Dongxu Yang^{a,b}, Xiangxue Wang^{b,c}, Shujun Yu^b, Hongqing Wang^{*a},

Tao Wen^b, Gang Song^c, Zhimin Yu^d and Xiangke Wang^{*b,d}

* Corresponding authors

^a School of Chemistry and Chemical Engineering, University of South China, 28

Changsheng West Road, Hengyang, Hunan 421001, PR China

E-mail: <u>Hqwang2001cn@126.com</u>

^b College of Environmental Science and Engineering, North China Electric Power

University, Beijing 102206, PR China

E-mail: <u>xkwang@ncepu.edu.cn</u>

^c Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou, 510006, China

^d Department of Biology and Environmental Engineering, Hefei University, Hefei 230000, PR China

2. Experimental

2.1. Chemicals

All chemicals (lead nitrate (Pb(NO₃)₂), copper nitrate (Cu(NO₃)₂), ferric chloride hexahydrate (FeCl₃·6H₂O), dopamine (DA), polyacrylamide (PAM), sodium citrate (Na₃C₆H₅O₇·2H₂O), urea (CH₄N₂O), sodium nitrate (NaNO₃), ethanol (C₂H₅OH), concentrated nitric acid (HNO₃), sodium hydroxide (NaOH)) were obtained form

sinopharm chemical reagent Co, Ltd in analytical grade, and used without further purification.

2.4. Characterization

The structures and surface morphologies of the as-prepared materials were characterized by field emission scanning electron microscopy (FE-SEM, Hitachi s-4800) and transmission electron microscopy (TEM, jeol 200f). The X-ray diffraction (XRD) measurements were carried out on D/max2500, utilizing a Cu K_a source (λ = 1.541 Å) at a scanning speed of 6°/min at the measuring region from 5° to 70°. Information regarding functional groups was measured on Fourier transformed infrared spectroscopy (FT-IR, IR Tracer-100). Thermogravimetric analyses (TGA) were performed by using the SETSYS Evolution thermo analyzer under N₂ atmosphere with a heating rate of 10 °C min⁻¹ from ambient temperature to 800 °C. Magnetic properties of adsorbents were analyzed by vibrating sample magnetometer (VSM, EV7, ADE) with an applied magnetic field between -10000 and 10000 O_e at ambient temperature. Based on the binding energy of samples, X-ray photoelectron spectroscopy (XPS, hermo Escalab 250) was conducted via adopting an Al X-ray source operated at 10 kV. The Zeta potential values of Fe₃O₄@PDA were achieved via a dynamic light scattering on ZETASIZER 3000 HAS system.

Figures captions

Fig. S1. TGA curves of Fe₃O₄ and Fe₃O₄/PDA nanoparticles.

Fig. S2. Nitrogen adsorption-desorption isotherm plot of hollow Fe_3O_4 microspheres and Fe_3O_4 @PDA nanoparticles.

Fig. S3. Zeta potential values as a function of pH. T=298 K, m/V= 0.2 g·L⁻¹.

Fig. S4. The linear plots of $\ln K_d$ versus C_e curves of Pb(II) (a) and Cu(II) (b) adsorption on Fe₃O₄, and Pb(II) (c) and Cu(II) (d) adsorption on Fe₃O₄@PDA.

Fig. S5. The linear plots of $\ln K^0$ versus 1/T of Pb(II) (a) and Cu(II) (b) adsorption on Fe₃O₄, and Pb(II) (c) and Cu(II) (d) adsorption on Fe₃O₄@PDA.

Fig. S6. The adsorption capacities of Fe_3O_4 @PDA for seven adsorbates, m/V = 0.2 g·L⁻¹, I = 0.01 M NaNO₃, C_{0 [initial]}=10 mg·L⁻¹, T = 298 K.

Table. S1. Adsorption thermodynamic parameters of Pb(II) and Cu(II) on Fe₃O₄ and Fe₃O₄@PDA at different temperatures

Adsorbents	Metal	<i>Т</i> (К)	∆G⁰(kJ·mol⁻	Δ <i>S</i> ⁰(J·K⁻	ΔH^0
	ions		¹)	¹∙mol⁻¹)	(kJ∙mol⁻¹)
Fe ₃ O ₄	Pb(II)	298	-10.33	36.67	6.64
		313	-10.85		
		328	-11.37		
	Cu(II)	298	-17.29	58.08	18.04
		313	-18.16		
		328	-19.04		
Fe₃O₄@PDA	Pb(II)	298	-22.65	76.03	16.71
		313	-23.79		
		328	-24.93		
	Cu(II)	298	-19.97	67.04	15.19
		313	-20.97		
		328	-21.98		