Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Content

S1. Raman Date

S2. The surface elemental composition

S3. A comparison of ORR performance of PFCMs–1000 with other catalysts

S4. The morphology of PDCFs

S5. The hollow distribution of dopamine pyrolysis

S6. The elemental composition of PFCMs-1000

S7. Differ concentration of ORR performance in alkaline medium

S8. The specific surface area and pore size distribution

S9. The morphology of PFCMs-1000 after stability test

References

S1. Raman Date

Samples	G band(cm ⁻¹)	D band(cm ⁻¹)	I_D/I_G
NCS-700	1593.49	1325.73	2.30
NCS-800	1592.70	1328.84	2.33
NCS-900	1591.49	1336.49	2.60
NCS-1000	1590.49	1346.73	2.77

Table S1. Peak positions and integrated intensity (I_D/I_G) of NCS.

S2. The surface elemental composition

Sample			XPS (%)	
	Fe	С	Ν	0
PFCMs-1000	2.87	80.94	5.26	12.18
CPDCFs	1.6	49.90	2.15	45.07

Table S2. Summary of the surface elemental composition as determined by XPS

S3. A comparison of ORR performance of PFCMs-1000 with other

catalysts

Table S3. Summary of reported ORR performance for nonprecious-metal-doped carbon catalysts in alkaline media (0.1 M KOH)

Sample	Mass loading	Onset Potential	Kinetic current	Ref.
	(mg cm ⁻²)	(V vs. RHE)	Density (mA	
			cm ⁻²)	
PFCMs-1000	0.24	0.949	-6.21 (@ 0.6 V)	This work
Fe-N-CNFs	0.60	0.93	-4.85(@0.5V)	1
N-Fe-C@CNTs	0.09	0.88	-	2
Fe-N/C	0.10	0.92	-7.4 (@ 0.82 V)	3
NHPCM-1000	0.32	0.88	-6.19 (@ 0.6 V)	4
N-OMCS-1.5-900	1.00	0.77	-	5
PANId_O2_800	0.48	0.75	-4.36 (@ 0.4V)	6
NMCS-3	0.66	0.86	-	7
Fe _{0.33} -CoP	<mark>1.65</mark>	<mark>0.90</mark>	-4.20 (@ 0.5V)	<mark>8</mark>
$B_{12}C_{77}N_{11}$	0.2	0.96	-4.29 (@ 0.4 V)	9
Meso/micro-PoPD	0.50	0.90	-	10
TTF-F	0.3	0.86	-4.9 (@ 0.6 V)	11
NiCoP/CNF900	<mark>0.4</mark>	<mark>0.82</mark>	<mark>-7.19 (@ 0.4V)</mark>	<mark>12</mark>
BP-NFe	0.40	1.06	-	13
DG	0.08	0.91	-5.2 (@ 0.4 V)	14
NCFs	<mark>0.16</mark>	<mark>0.736</mark>	-3.3 (@ 0.23V)	<mark>15</mark>
N-doped graphene	0.05	0.95	-6.7 (@ 0.58 V)	16
NHPCM-1000	0.32	0.88	-6.19 (@ 0.6 V)	17
Pt/MPCNFs	<mark>0.30</mark>	<mark>0.99</mark>	-4.75 (@ 0.4V)	<mark>18</mark>
PANI-4.5Fe-T2(SBA-15)	-	0.95	-7.4 (@ 0.82 V)	19

S4. The morphology of PDCFs

Fig. S1 SEM image of PDCFs.

S5. The surface hollow distribution of dopamine pyrolysis

Fig. S2 The surface hollow size distribution histogram of PFCMs -1000.

S6. The elemental composition of PFCMs-1000

	Elements	Wt (%)	Atomic ratio
	С	71.8	82.71
	N	6.32	6.24
N	0	9.12	7.88
	Fe	12.7	3.14
	Total:	100	100

Fig. S3. EDX spectrum of PFCMs-1000.

S7. The specific surface area and pore size distribution

Fig. S4 The N_2 adsorption curve of (a) CPDCFs and (b) PFCMs-1000. The KJS pores size distribution of (c) CPDCFs and (d) PFCMs-1000.

S8. Differ concentration of ORR performance in alkaline medium

Fig. S5 The RDE polarization curves with synthesis concentration at (A) 0.2M (B) 0.3M (C) 0.4M and (D) 0.5M in changed temperature with a scan rate of 10 mV s⁻¹.

S9. The morphology of PFCMs–1000 after stability test

Fig. S6 TEM images of PFCMs-1000 after stability test.

References

- 1 Z. Y. Wu, X. X. Xu, B. C. Hu, H. W. Liang, Y. Lin, L. F. Chen, and S. H. Yu, *Angew. Chem., Int. Ed.*, 2015, **54**, 8179–8183.
- C. Hu, L. Wang, Y. Zhao, M. Ye, Q. Chen, Z. Feng, and L. Qu, *Nanoscale*, 2014, 6, 8002–8009.
- 3 L. Lin, Q. Zhu, and A.-W. Xu, J. Am. Chem. Soc., 2014, 136, 11027–11033.
- 4 Y. Chen, R. Ma, Z. Zhou, G. Liu, Y. Zhou, Q. Liu, S. Kaskel, and J. Wang, *Adv. Mater.*, *Interfaces* 2015, **2**, 1500199.
- 5 J. Li, Z. Li, J. Tong, C. Xia, and F. Li, *RSC Adv.*, 2015, **5**, 70010–70016.
- 6 J. Quílez-Bermejo, C. González-Gaitán, E. Morallón, and D. Cazorla-Amorós, *Carbon*, 2017, **119**, 62–71.
- 7 J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, and Y. Yamauchi, *Angew. Chem. Int. Ed.*, 2015, **54**, 588–593.
- 8 X. Qin, Z. Wang, J. Han, Y. Luo, F. Xie, G. Cui, X. Guo and X. Sun, Chem. Commun., 2018, 54, 7693–7696.
- 9 S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek, and L. Dai, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 4209–4212.
- H.-W. Liang, X. Zhuang, S. Brüller, X. Feng, and K. Müllen, *Nat. commun.*, 2014, 5, 4973.
- 11 L. Hao, S. Zhang, R. Liu, J. Ning, G. Zhang, and L. Zhi, *Adv. Mater.*, 2015, 27, 3190–3195.
- 12 S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, and R. K. Selvan, *Adv. Energy Mater.*, 2018, **20**, 1800555.
- 13 J. Liu, X. Sun, P. Song, Y. Zhang, W. Xing, and W. Xu, *Adv. Mater.*, 2013, **25**, 6879–6883.
- 14 Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, and X. Yao, *Adv. Mater.*, 2016, **28**, 9532–9538.
- 15 C. Xu, S. Chen, L. Du, C. Li, X. Gao, J. Liu, L. Qu, and P. Chen, *ACS Sustainable Chem. Eng.*, 2018, **6**, 3358–3366.
- 16 K. Parvez, S. B. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng, and K. Müllen, ACS nano, 2012, 6, 9541–9550.
- 17 Y. Chen, R. Ma, Z. Zhou, G. Liu, Y. Zhou, Q. Liu, S. Kaskel, and J. Wang, *Adv. Mater. Interfaces*, 2015, 2, 1500199.
- 18 K. K. Karuppanan, A. V. Raghu, M. K. Panthalingal, S. Ramanathan, T. Kumaresanc and B. Pullithadathil, *J. Mater. Chem. A*, 2018, **6**, 12768–12781.
- 19 X.-H. Yan and B.-Q. Xu, J. Mater. Chem. A, 2014, 2, 8617–8622.