Electronic Supporting Information:

Cu nanocrystals enhancement of C_3N_4/Cu hetero-structure and new application on photo-electronic catalysis: hydrazine oxidation and redox reaction of organic molecule

Muwei Ji,^{a,b} Jintao Huang,^{a,b} Yiqing He,^c Dongsheng He,^d Donghai Luo,^a Erhuang Zhang,^e Meng Xu,^e Jia Liu,^e Jiatao Zhang,^e Bo Li,^c Jian Xu,^b Jin Wang,^c and Caizhen Zhua,^{*}

- College of chemistry and environment engineering, Shenzhen University, Shenzhen, 518060, P.
 R. China.
- b. Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- c. Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, P.R. China.
- d. Southern University of science and technology, Shenzhen, 518055, P.R. China.
- e. Beijing institute of technology, Beijing, 100081, P.R. China.

Figure S1-S11 and Table S1-S2

Figure S1. SEM images of as-prepared products after the reaction between C_3N_4/Cu hetero structure; B) the according EDS analysis.

Table S1. Cu concentration of C_3N_4/Cu , characterized by ICP. The test solution was prepared by employing 99.3 mg of as-prepared C_3N_4/Cu to dissolute in HNO₃ then the resulted solution was diluted into 10 mL with water.

Element	Concentration of Cu (mg/L)	S.D.
Cu	5.99	0.01

Figure S2. Survey XPS of as-prepared C_3N_4 powder abd the according high solution XPS sprectra of B) C 1s and C) N 1s.

Figure S3. The UV-visual absorption spectra of C_3N_4/Cu hetero structure and graphitic C_3N_4 electrode.

Figure S4. The photocurrent of C_3N_4/Cu hetero structure (A) and graphitic C_3N_4 electrode (B).

Figure S5. The CV plots of $_{3}N_{4}/Cu$ hetero structure and graphitic $C_{3}N_{4}$ electrode with hydrazine free.

Figure S6. N_2 sorption isotherms of C_3N_4/Cu and graphitic C_3N_4 .

C ₃ N ₄ /Cu		
V _m	1.6163 [cm3(STP) g-1]	
a _{s,BET}	7.035 [m2 g-1]	
С	304.16	
Total pore volume(p/p ₀ =0.990)	0.07683 [cm3 g-1]	
Mean pore diameter	43.685 nm	
C ₃ N ₄		
V _m	2.156 [cm3(STP) g-1]	
a _{s,BET}	9.384 [m2 g-1]	
С	88.625	
Total pore volume(p/p ₀ =0.990)	0.078712 [cm3 g-1]	

Table S2. BET characterization of as-prepared of C_3N_4/Cu and graphitic C_3N_4 , which showed thesurface of graphitic C_3N_4 was closed to that of C_3N_4/Cu hetero-structure.

Figure S7. The XPS spectrum of as-prepared C_3N_4/Cu hetero-structure after photo-electronic reaction: (A) survey spectra and high solution XPS, (B) Cu 2p, (C) N 1s, and (D) C 1s.

Figure S8. XRD pattern comparing of C_3N_4/Cu hetero-structure before and after photo-electronic catalysis.

Figure S9. The TEM images of as-prepared C_3N_4/Cu hetero-structure after photo-electronic catalysis.

Figure S10. The TEM images of as-prepared C_3N_4/Cu hetero-structure after photo-electronic catalysis.

Figure S11. The HRTEM images of as-prepared C_3N_4/Cu hetero-structure before and after photoelectronic catalysis.