Flexible Coordination of Pb Atoms and Variable Zinc-Borate Framework to Construct Three Pb₅Zn₄B₆O₁₈ Polymorphs

Xiaobo Pan,^a Hongping Wu,^{*a} Ming Wen,^a Bingbing Zhang,^a Zhihua Yang^a and Shilie Pan^{*a}

^{*a*} CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Key Laboratory of Electronic Information Materials and Devices; Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi 830011, China.

To whom correspondence should be addressed: slpan@ms.xjb.ac.cn (Shilie Pan)

parameters (Å ² ×10 ³) for α -Pb ₅ Zn ₄ B ₆ O ₁₈				
Atom	Х	у	Z	U(eq) ^[a]
Pb(1)	550(1)	-253(1)	7526(1)	12(1)
Pb(2)	2417(1)	-247(1)	6604(1)	16(1)
Pb(3)	1411(1)	191(1)	4954(1)	11(1)
Pb(4)	3684(1)	5178(1)	5070(1)	11(1)
Pb(5)	2440(1)	4800(1)	6717(1)	14(1)
Pb(6)	1418(1)	5024(1)	5069(1)	11(1)
Pb(7)	3668(1)	142(1)	5041(1)	11(1)
Pb(8)	2478(1)	4912(1)	8315(1)	13(1)
Pb(9)	2633(1)	-117(1)	8316(1)	14(1)
Pb(10)	5024(1)	9556(1)	2515(1)	22(1)
Zn(1)	4054(1)	2706(1)	3921(1)	9(1)
Zn(2)	1059(1)	-2446(1)	8781(1)	8(1)
Zn(3)	5904(1)	7572(1)	3579(1)	11(1)
Zn(4)	4077(1)	7722(1)	3957(1)	9(1)
Zn(5)	1066(1)	2488(1)	8712(1)	8(1)
Zn(6)	4112(1)	7630(1)	1477(1)	11(1)
Zn(7)	930(1)	2495(1)	6274(1)	8(1)
Zn(8)	879(1)	-2466(1)	6221(1)	8(1)
B(1)	-124(9)	1(13)	6189(6)	8(3)
B(2)	5080(9)	10203(13)	1109(6)	8(3)
B(3)	2587(10)	2316(14)	9523(7)	9(3)
B(4)	1644(11)	2419(15)	7522(7)	17(4)
B(5)	4948(10)	10186(14)	3878(7)	12(3)
B(6)	2426(9)	7629(13)	792(6)	7(3)
B(7)	7563(10)	7636(14)	4240(7)	9(3)
B(8)	3557(10)	7105(14)	2674(7)	12(3)
B(9)	18(10)	-4980(14)	6198(7)	14(4)
B(10)	6405(9)	7182(14)	2345(7)	9(3)
B(11)	2597(10)	-2651(13)	9529(7)	8(3)
B(12)	1602(10)	7378(14)	7518(7)	13(4)
O(1)	2524(5)	-926(8)	4646(3)	9(2)
O(2)	2525(5)	1104(8)	5513(4)	13(2)
O(3)	2577(5)	4066(8)	4680(4)	11(2)
O(4)	2480(5)	6109(8)	5538(4)	14(2)

Table S1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement

O(5)	3225(5)	4052(8)	7568(4)	15(2)
O(6)	3367(5)	7162(8)	4570(4)	11(2)
O(7)	5043(5)	6607(8)	3950(4)	13(2)
O(8)	-114(5)	-1413(8)	6129(4)	13(2)
O(9)	1423(5)	-1922(8)	7001(4)	12(2)
O(10)	1684(5)	3037(8)	5699(4)	12(2)
O(11)	1731(5)	-1846(8)	5737(4)	14(2)
O(12)	1696(5)	970(8)	7546(4)	13(2)
O(13)	706(5)	-4377(8)	6073(4)	14(2)
O(14)	1863(6)	2956(8)	9357(4)	14(2)
O(15)	647(5)	670(8)	8565(4)	16(2)
O(16)	4284(6)	4616(8)	4136(4)	17(2)
O(17)	3076(6)	7078(8)	1141(4)	19(2)
O(18)	1396(5)	-1897(8)	8007(4)	15(2)
O(19)	1903(6)	6092(8)	7535(4)	18(2)
O(20)	616(6)	604(8)	6373(4)	20(2)
O(21)	1584(5)	3136(8)	8016(4)	16(2)
O(22)	3189(5)	-906(8)	7483(4)	18(2)
O(23)	4070(6)	7802(8)	2333(4)	15(2)
O(24)	5866(6)	7671(8)	2722(4)	22(2)
O(25)	1621(6)	3016(8)	6982(4)	18(2)
O(26)	4568(6)	9487(9)	1440(4)	23(2)
O(27)	1928(5)	-1900(8)	9330(4)	15(2)
O(28)	3318(5)	2049(8)	4486(4)	12(2)
O(29)	6945(6)	6994(8)	3899(4)	20(2)
O(30)	5023(6)	1621(8)	3862(4)	17(2)
O(31)	837(5)	-4349(8)	8900(4)	15(2)
O(32)	4325(6)	9622(9)	4115(4)	20(2)
O(33)	3451(6)	2913(9)	3163(4)	21(2)
O(34)	-47(5)	3599(8)	6163(4)	15(2)
O(35)	3418(6)	7503(9)	3240(4)	22(2)
O(26)	5543(6)	9489(9)	3610(4)	27(2)

Atom	Х	V	Z	<i>U</i> (ea) ^[a]
Pb(1)	-4879(1)	7282(1)	5029(1)	14(1)
Pb(2)	5273(2)	4876(2)	1669(1)	48(1)
Pb(3A)	5487(4)	849(2)	41(2)	22(1)
Pb(3B)	5000	0	0	22(1)
Zn(1)	247(4)	8041(3)	2698(2)	12(1)
Zn(2)	71(4)	1851(3)	2271(2)	15(1)
B(1)	-4810(40)	9990(30)	2680(20)	15(4)
B(2)	10360(50)	3080(30)	-180(20)	21(5)
B(3)	260(40)	5040(30)	3796(18)	10(4)
O(1)	-1230(30)	6512(16)	3760(12)	12(3)
O(2)	2970(30)	5102(15)	4088(13)	15(3)
O(3)	-1030(30)	3551(18)	3416(14)	22(3)
O(4)	-2120(30)	9910(17)	2533(17)	26(4)
O(5)	8930(30)	2580(20)	772(15)	32(4)
O(6)	-6110(30)	11270(20)	2222(18)	33(4)
O(7)	-6140(30)	8701(19)	3170(16)	24(3)
O(8)	6970(30)	6640(20)	92(17)	36(4)
O(9)	870(40)	6740(30)	1201(16)	48(6)

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for β -Pb₅Zn₄B₆O₁₈

[a] U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	1	, ,	0 1 0 10	
Atom	Х	у	Z	U(eq) ^[a]
Pb(1)	564(2)	7319(1)	5987(1)	23(1)
Pb(2)	0	10000	5000	40(1)
Pb(3)	9667(2)	5389(1)	3512(1)	22(1)
Zn(1)	5053(5)	9235(2)	3041(2)	16(1)
Zn(2)	5291(5)	7176(2)	3690(3)	18(1)
B(1)	10370(50)	8251(16)	3600(20)	11(5)
B(2)	5310(50)	5909(15)	5600(20)	11(5)
B(3)	4650(60)	6135(18)	1530(20)	18(6)
O(1)	4120(30)	9460(11)	1463(15)	22(4)
O(2)	2410(60)	8667(16)	5900(20)	68(8)
O(3)	9000(40)	9020(11)	3274(16)	26(4)
O(4)	5770(70)	6510(20)	2430(30)	108(13)
O(5)	3050(30)	8196(10)	3359(15)	20(4)
O(6)	4090(40)	10329(11)	3768(17)	29(5)
O(7)	9030(30)	7583(10)	4139(12)	11(3)
O(8)	3910(40)	6572(12)	4992(19)	37(5)
O(9)	7910(30)	5683(10)	5270(13)	15(3)

Table S3. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for γ -Pb₅Zn₄B₆O₁₈

[a] U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Pb(1)-O(12)	2.222(8)	O(14)#3-Pb(3)-O(11)	150.9(3)
Pb(1)-O(18)	2.342(8)	O(31)#4-Pb(3)-O(11)	114.8(2)
Pb(1)-O(9)	2.527(8)	O(3)-Pb(4)-O(6)	93.3(3)
Pb(1)-O(15)	2.544(9)	O(3)-Pb(4)-O(4)	72.8(3)
Pb(2)-O(17)#2	2.374(9)	O(6)-Pb(4)-O(4)	75.6(3)
Pb(2)-O(22)	2.394(9)	O(3)-Pb(4)-O(16)	84.6(3)
Pb(2)-O(9)	2.519(8)	O(6)-Pb(4)-O(16)	80.8(3)
Pb(2)-O(11)	2.711(8)	O(4)-Pb(4)-O(16)	146.0(3)
Pb(2)-Zn(8)	3.3881(16)	O(25)-Pb(5)-O(5)	81.0(3)
Pb(3)-O(1)	2.276(8)	O(25)-Pb(5)-O(19)	86.4(3)
Pb(3)-O(2)	2.332(8)	O(5)-Pb(5)-O(19)	74.4(3)
Pb(3)-O(14)#3	2.412(8)	O(25)-Pb(5)-O(29)#5	83.6(3)
Pb(3)-O(31)#4	2.665(8)	O(5)-Pb(5)-O(29)#5	92.1(3)
Pb(3)-O(11)	2.703(8)	O(19)-Pb(5)-O(29)#5	164.3(3)
Pb(4)-O(3)	2.244(8)	O(4)-Pb(6)-O(3)	75.5(3)
Pb(4)-O(6)	2.287(8)	O(4)-Pb(6)-O(10)	89.2(3)
Pb(4)-O(4)	2.482(9)	O(3)-Pb(6)-O(10)	78.2(3)
Pb(4)-O(16)	2.485(9)	O(4)-Pb(6)-O(27)#3	73.6(3)
Pb(5)-O(25)	2.302(9)	O(3)-Pb(6)-O(27)#3	74.4(3)
Pb(5)-O(5)	2.379(8)	O(10)-Pb(6)-O(27)#3	150.5(3)
Pb(5)-O(19)	2.473(9)	O(4)-Pb(6)-O(13)#6	81.7(3)
Pb(5)-O(29)#5	2.503(9)	O(3)-Pb(6)-O(13)#6	144.5(3)
Pb(6)-O(4)	2.245(8)	O(10)-Pb(6)-O(13)#6	74.6(3)
Pb(6)-O(3)	2.347(8)	O(27)#3-Pb(6)-O(13)#6	124.4(2)
Pb(6)-O(10)	2.437(8)	O(1)-Pb(7)-O(28)	88.9(3)
Pb(6)-O(27)#3	2.667(8)	O(1)-Pb(7)-O(2)	73.4(3)
Pb(6)-O(13)#6	2.721(9)	O(28)-Pb(7)-O(2)	76.4(3)
Pb(7)-O(1)	2.275(8)	O(1)-Pb(7)-O(32)#1	87.7(3)
Pb(7)-O(28)	2.300(8)	O(28)-Pb(7)-O(32)#1	78.3(3)
Pb(7)-O(2)	2.417(9)	O(2)-Pb(7)-O(32)#1	148.5(3)
Pb(7)-O(32)#1	2.502(9)	O(19)-Pb(8)-O(5)	79.1(3)
Pb(8)-O(19)	2.277(9)	O(19)-Pb(8)-O(21)	85.7(3)
Pb(8)-O(5)	2.332(9)	O(5)-Pb(8)-O(21)	82.4(3)
Pb(8)-O(21)	2.337(8)	O(22)-Pb(9)-O(12)	79.1(3)
Pb(9)-O(22)	2.309(9)	O(22)-Pb(9)-O(33)#2	85.7(3)
Pb(9)-O(12)	2.495(8)	O(12)-Pb(9)-O(33)#2	81.4(3)

Table S4. Selected bond distances (Å) and angles (deg) for α -Pb₅Zn₄B₆O₁₈

Pb(9)-O(33)#2	2.566(9)	O(22)-Pb(9)-O(35)#2	55.7(3)
Pb(9)-O(35)#2	2.666(9)	O(12)-Pb(9)-O(35)#2	126.8(3)
Pb(9)-O(18)	2.722(9)	O(33)#2-Pb(9)-O(35)#2	117.4(3)
Pb(10)-O(24)	2.323(9)	O(22)-Pb(9)-O(18)	84.4(3)
Pb(10)-O(23)	2.332(9)	O(12)-Pb(9)-O(18)	71.0(3)
Pb(10)-O(26)	2.531(9)	O(33)#2-Pb(9)-O(18)	152.0(3)
Pb(10)-O(36)	2.601(10)	O(35)#2-Pb(9)-O(18)	77.4(3)
Pb(10)-Zn(6)	3.3073(16)	O(24)-Pb(10)-O(23)	80.8(3)
Pb(10)-Zn(3)	3.3603(16)	O(24)-Pb(10)-O(26)	108.0(3)
Zn(1)-O(30)	1.919(9)	O(23)-Pb(10)-O(26)	70.0(3)
Zn(1)-O(28)	1.942(9)	O(24)-Pb(10)-O(36)	68.5(3)
Zn(1)-O(33)	1.951(9)	O(23)-Pb(10)-O(36)	108.9(3)
Zn(1)-O(16)	1.952(8)	O(26)-Pb(10)-O(36)	176.5(3)
Zn(2)-O(31)	1.910(8)	O(30)-Zn(1)-O(28)	114.9(4)
Zn(2)-O(27)	1.911(9)	O(30)-Zn(1)-O(33)	111.3(4)
Zn(2)-O(34)#7	1.957(9)	O(28)-Zn(1)-O(33)	109.4(4)
Zn(2)-O(18)	1.974(9)	O(30)-Zn(1)-O(16)	113.3(4)
Zn(3)-O(29)	1.895(10)	O(28)-Zn(1)-O(16)	105.2(4)
Zn(3)-O(7)	1.940(9)	O(33)-Zn(1)-O(16)	101.8(4)
Zn(3)-O(36)	1.959(9)	O(31)-Zn(2)-O(27)	108.4(4)
Zn(3)-O(24)	1.969(10)	O(31)-Zn(2)-O(34)#7	108.9(4)
Zn(4)-O(35)	1.916(10)	O(27)-Zn(2)-O(34)#7	114.1(4)
Zn(4)-O(7)	1.920(9)	O(31)-Zn(2)-O(18)	117.3(4)
Zn(4)-O(32)	1.922(9)	O(27)-Zn(2)-O(18)	106.1(4)
Zn(4)-O(6)	1.965(9)	O(34)#7-Zn(2)-O(18)	102.2(4)
Zn(5)-O(15)	1.919(8)	O(29)-Zn(3)-O(7)	110.4(4)
Zn(5)-O(8)#8	1.947(9)	O(29)-Zn(3)-O(36)	122.3(4)
Zn(5)-O(14)	1.960(9)	O(7)-Zn(3)-O(36)	102.4(4)
Zn(5)-O(21)	1.966(9)	O(29)-Zn(3)-O(24)	111.6(4)
Zn(6)-O(17)	1.892(10)	O(7)-Zn(3)-O(24)	119.4(4)
Zn(6)-O(30)#9	1.933(9)	O(36)-Zn(3)-O(24)	90.1(4)
Zn(6)-O(26)	1.960(9)	O(35)-Zn(4)-O(7)	110.2(4)
Zn(6)-O(23)	1.982(9)	O(35)-Zn(4)-O(32)	111.6(4)
Zn(7)-O(20)	1.927(8)	O(7)-Zn(4)-O(32)	112.4(4)
Zn(7)-O(34)	1.929(9)	O(35)-Zn(4)-O(6)	105.1(4)
Zn(7)-O(10)	1.945(9)	O(7)-Zn(4)-O(6)	112.2(3)
Zn(7)-O(25)	1.982(9)	O(32)-Zn(4)-O(6)	105.0(4)
Zn(8)-O(13)	1.908(8)	O(15)-Zn(5)-O(8)#8	104.9(4)

Zn(8)-O(8)	1.921(8)	O(15)-Zn(5)-O(14)	124.0(4)
Zn(8)-O(11)	1.941(9)	O(8)#8-Zn(5)-O(14)	103.3(4)
Zn(8)-O(9)	2.015(9)	O(15)-Zn(5)-O(21)	108.8(4)
B(1)-O(31)#8	1.331(16)	O(8)#8-Zn(5)-O(21)	112.0(3)
B(1)-O(8)	1.382(15)	O(14)-Zn(5)-O(21)	103.8(4)
B(1)-O(20)	1.386(17)	O(17)-Zn(6)-O(30)#9	110.7(4)
B(2)-O(16)#9	1.346(17)	O(17)-Zn(6)-O(26)	125.3(4)
B(2)-O(26)	1.362(17)	O(30)#9-Zn(6)-O(26)	99.1(4)
B(2)-O(7)#9	1.386(15)	O(17)-Zn(6)-O(23)	109.7(4)
B(3)-O(28)#2	1.355(17)	O(30)#9-Zn(6)-O(23)	121.3(4)
B(3)-O(14)	1.370(17)	O(26)-Zn(6)-O(23)	90.3(4)
B(3)-O(3)#2	1.393(15)	O(20)-Zn(7)-O(34)	108.8(4)
B(4)-O(21)	1.340(18)	O(20)-Zn(7)-O(10)	121.8(4)
B(4)-O(25)	1.369(18)	O(34)-Zn(7)-O(10)	108.6(4)
B(4)-O(12)	1.413(16)	O(20)-Zn(7)-O(25)	106.8(4)
B(5)-O(32)	1.310(17)	O(34)-Zn(7)-O(25)	112.8(4)
B(5)-O(36)	1.370(18)	O(10)-Zn(7)-O(25)	97.8(4)
B(5)-O(30)#6	1.402(15)	O(13)-Zn(8)-O(8)	112.7(4)
B(6)-O(4)#10	1.366(15)	O(13)-Zn(8)-O(11)	107.7(4)
B(6)-O(11)#3	1.369(16)	O(8)-Zn(8)-O(11)	114.0(4)
B(6)-O(17)	1.394(17)	O(13)-Zn(8)-O(9)	117.8(3)
B(7)-O(2)#5	1.363(15)	O(8)-Zn(8)-O(9)	106.1(3)
B(7)-O(29)	1.385(17)	O(11)-Zn(8)-O(9)	97.9(4)
B(7)-O(10)#5	1.394(17)	O(31)#8-B(1)-O(8)	118.3(12)
B(8)-O(23)	1.367(17)	O(31)#8-B(1)-O(20)	125.7(11)
B(8)-O(22)#3	1.371(16)	O(8)-B(1)-O(20)	115.8(12)
B(8)-O(35)	1.393(17)	O(16)#9-B(2)-O(26)	122.8(11)
B(9)-O(13)	1.320(17)	O(16)#9-B(2)-O(7)#9	119.3(12)
B(9)-O(34)#1	1.389(15)	O(26)-B(2)-O(7)#9	117.9(12)
B(9)-O(15)#7	1.402(18)	O(28)#2-B(3)-O(14)	121.8(11)
B(10)-O(5)#5	1.353(16)	O(28)#2-B(3)-O(3)#2	118.9(12)
B(10)-O(24)	1.365(18)	O(14)-B(3)-O(3)#2	119.0(12)
B(10)-O(33)#9	1.401(17)	O(21)-B(4)-O(25)	123.2(12)
B(11)-O(6)#2	1.345(17)	O(21)-B(4)-O(12)	119.7(13)
B(11)-O(27)	1.369(17)	O(25)-B(4)-O(12)	117.0(13)
B(11)-O(1)#11	1.417(15)	O(32)-B(5)-O(36)	125.4(12)
B(12)-O(19)	1.345(16)	O(32)-B(5)-O(30)#6	120.0(13)
B(12)-O(9)#6	1.383(17)	O(36)-B(5)-O(30)#6	114.5(12)

B(12)-O(18)#6	1.388(17)	O(4)#10-B(6)-O(11)#3	122.6(12)
O(12)-Pb(1)-O(18)	83.4(3)	O(4)#10-B(6)-O(17)	121.5(12)
O(12)-Pb(1)-O(9)	81.2(3)	O(11)#3-B(6)-O(17)	115.9(11)
O(18)-Pb(1)-O(9)	56.6(3)	O(2)#5-B(7)-O(29)	123.2(12)
O(12)-Pb(1)-O(15)	78.2(3)	O(2)#5-B(7)-O(10)#5	119.9(12)
O(18)-Pb(1)-O(15)	78.6(3)	O(29)-B(7)-O(10)#5	116.8(11)
O(9)-Pb(1)-O(15)	132.4(3)	O(23)-B(8)-O(22)#3	120.9(13)
O(17)#2-Pb(2)-O(22)	87.0(3)	O(23)-B(8)-O(35)	123.0(12)
O(17)#2-Pb(2)-O(9)	90.1(3)	O(22)#3-B(8)-O(35)	116.0(12)
O(22)-Pb(2)-O(9)	80.7(3)	O(13)-B(9)-O(34)#1	119.5(13)
O(17)#2-Pb(2)-O(11)	54.3(3)	O(13)-B(9)-O(15)#7	125.6(12)
O(22)-Pb(2)-O(11)	129.3(3)	O(34)#1-B(9)-O(15)#7	114.4(12)
O(9)-Pb(2)-O(11)	69.5(3)	O(5)#5-B(10)-O(24)	121.2(12)
O(1)-Pb(3)-O(2)	75.0(3)	O(5)#5-B(10)-O(33)#9	118.2(12)
O(1)-Pb(3)-O(14)#3	84.1(3)	O(24)-B(10)-O(33)#9	120.4(12)
O(2)-Pb(3)-O(14)#3	76.6(3)	O(6)#2-B(11)-O(27)	124.0(11)
O(1)-Pb(3)-O(31)#4	79.1(3)	O(6)#2-B(11)-O(1)#11	115.1(11)
O(2)-Pb(3)-O(31)#4	146.2(3)	O(27)-B(11)-O(1)#11	120.5(12)
O(14)#3-Pb(3)-O(31)#4	79.4(3)	O(19)-B(12)-O(9)#6	122.6(13)
O(1)-Pb(3)-O(11)	74.6(3)	O(19)-B(12)-O(18)#6	123.9(13)
O(2)-Pb(3)-O(11)	78.8(3)	O(9)#6-B(12)-O(18)#6	113.4(11)

Symmetry transformations used to generate equivalent atoms:

Pb(1)-O(2)#1	2.254(13)	O(2)#1-Pb(1)-O(7)	82.6(5)
Pb(1)-O(1)	2.368(12)	O(1)-Pb(1)-O(7)	77.9(5)
Pb(1)-O(2)#2	2.432(13)	O(2)#2-Pb(1)-O(7)	148.7(5)
Pb(1)-O(7)	2.567(16)	O(8)-Pb(2)-O(8)#4	80.8(6)
Pb(2)-O(8)	2.521(19)	O(8)-Pb(2)-O(9)	76.7(6)
Pb(2)-O(8)#4	2.530(18)	O(8)#4-Pb(2)-O(9)	75.0(6)
Pb(2)-O(9)	2.723(16)	O(8)-Pb(2)-O(5)	85.3(6)
Pb(2)-O(5)	2.736(18)	O(8)#4-Pb(2)-O(5)	73.2(6)
Pb(3A)-O(5)	2.308(17)	O(9)-Pb(2)-O(5)	145.6(5)
Pb(3A)-O(8)#4	2.38(2)	O(5)-Pb(3A)-O(8)#4	84.3(6)
Pb(3A)-O(6)#6	2.62(2)	O(5)-Pb(3A)-O(6)#6	80.8(6)
Pb(3B)-O(6)#6	2.73(2)	O(8)#4-Pb(3A)-O(6)#6	81.6(6)
Pb(3B)-O(6)#7	2.73(2)	O(6)#6-Pb(3B)-O(6)#7	180.000(1)
Zn(1)-O(7)#8	1.918(15)	O(7)#8-Zn(1)-O(4)	112.7(6)
Zn(1)-O(4)	1.930(14)	O(7)#8-Zn(1)-O(1)	110.2(6)
Zn(1)-O(1)	1.934(13)	O(4)-Zn(1)-O(1)	112.1(6)
Zn(1)-O(9)	1.968(19)	O(7)#8-Zn(1)-O(9)	102.6(8)
Zn(2)-O(3)	1.908(16)	O(4)-Zn(1)-O(9)	112.4(8)
Zn(2)-O(5)#1	1.938(18)	O(1)-Zn(1)-O(9)	106.4(9)
Zn(2)-O(4)#10	1.939(14)	O(3)-Zn(2)-O(5)#1	105.9(7)
Zn(2)-O(6)#6	1.940(15)	O(3)-Zn(2)-O(4)#10	106.5(7)
Zn(2)-Zn(1)#10	3.153(3)	O(5)#1-Zn(2)-O(4)#10	106.2(7)
B(1)-O(4)	1.34(2)	O(3)-Zn(2)-O(6)#6	117.3(8)
B(1)-O(6)	1.36(3)	O(5)#1-Zn(2)-O(6)#6	110.2(8)
B(1)-O(7)	1.38(3)	O(4)#10-Zn(2)-O(6)#6	110.0(6)
B(2)-O(9)#4	1.33(3)	O(4)-B(1)-O(6)	116.8(19)
B(2)-O(8)#11	1.34(3)	O(4)-B(1)-O(7)	119.1(18)
B(2)-O(5)	1.38(3)	O(6)-B(1)-O(7)	123.7(17)
B(3)-O(2)	1.37(2)	O(9)#4-B(2)-O(8)#11	119(2)
B(3)-O(3)	1.39(2)	O(9)#4-B(2)-O(5)	121(2)
B(3)-O(1)	1.41(2)	O(8)#11-B(2)-O(5)	120(2)
O(2)#1-Pb(1)-O(1)	84.2(5)	O(2)-B(3)-O(3)	121.9(17)
O(2)#1-Pb(1)-O(2)#2	76.5(6)	O(2)-B(3)-O(1)	120.0(16)
O(1)-Pb(1)-O(2)#2	77.1(5)	O(3)-B(3)-O(1)	117.8(16)

Table S5. Selected bond distances (Å) and angles (deg) for β -Pb₅Zn₄B₆O₁₈

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x,-y+1,-z+1 #3 -x-1,-y+1,-z+1

#4 -x+1,-y+1,-z #5 -x+1,-y,-z #6 x+1,y-1,z #7 -x,-y+1,-z #8 x+1,y,z #9 x,y+1,z #10 x,y-1,z #11 -x+2,-y+1,-z #12 x-1,y+1,z

Pb(1)-O(2)	2.26(2)	O(6)-Pb(2)-O(2)#2	86.8(7)
Pb(1)-O(7)#1	2.328(14)	O(2)-Pb(2)-O(2)#2	180.000(10)
Pb(1)-O(8)	2.34(2)	O(6)#2-Pb(2)-O(3)#1	102.8(6)
Pb(2)-O(6)#2	2.552(19)	O(6)-Pb(2)-O(3)#1	77.2(6)
Pb(2)-O(6)	2.552(19)	O(2)-Pb(2)-O(3)#1	86.1(7)
Pb(2)-O(2)	2.56(3)	O(2)#2-Pb(2)-O(3)#1	93.9(7)
Pb(2)-O(2)#2	2.56(3)	O(6)#2-Pb(2)-O(3)#3	77.2(6)
Pb(2)-O(3)#1	2.580(18)	O(6)-Pb(2)-O(3)#3	102.8(6)
Pb(2)-O(3)#3	2.580(18)	O(2)-Pb(2)-O(3)#3	93.9(7)
Pb(3)-O(1)#4	2.313(16)	O(2)#2-Pb(2)-O(3)#3	86.1(7)
Pb(3)-O(9)	2.337(16)	O(3)#1-Pb(2)-O(3)#3	179.999(7)
Pb(3)-O(9)#5	2.457(15)	O(1)#4-Pb(3)-O(9)	78.1(6)
Zn(1)-O(5)	1.910(16)	O(1)#4-Pb(3)-O(9)#5	86.0(6)
Zn(1)-O(3)	1.929(18)	O(9)-Pb(3)-O(9)#5	77.2(6)
Zn(1)-O(1)	1.946(19)	O(5)-Zn(1)-O(3)	109.0(7)
Zn(1)-O(6)	1.957(17)	O(5)-Zn(1)-O(1)	104.2(7)
Zn(2)-O(4)	1.84(3)	O(3)-Zn(1)-O(1)	110.7(8)
Zn(2)-O(5)	1.932(16)	O(5)-Zn(1)-O(6)	120.1(8)
Zn(2)-O(8)	1.95(2)	O(3)-Zn(1)-O(6)	109.4(7)
Zn(2)-O(7)	1.953(14)	O(1)-Zn(1)-O(6)	103.1(8)
B(1)-O(5)#7	1.34(3)	O(4)-Zn(2)-O(5)	112.0(13)
B(1)-O(7)	1.38(3)	O(4)-Zn(2)-O(8)	116.2(14)
B(1)-O(3)	1.40(3)	O(5)-Zn(2)-O(8)	110.1(8)
B(2)-O(1)#8	1.33(3)	O(4)-Zn(2)-O(7)	104.8(11)
B(2)-O(9)	1.36(3)	O(5)-Zn(2)-O(7)	107.0(6)
B(2)-O(8)	1.40(3)	O(8)-Zn(2)-O(7)	106.0(7)
B(3)-O(4)	1.31(4)	O(5)#7-B(1)-O(7)	122(2)
B(3)-O(2)#9	1.32(3)	O(5)#7-B(1)-O(3)	116(2)
B(3)-O(6)#4	1.43(3)	O(7)-B(1)-O(3)	122(2)
O(2)-Pb(1)-O(7)#1	84.6(8)	O(1)#8-B(2)-O(9)	123(2)
O(2)-Pb(1)-O(8)	98.6(9)	O(1)#8-B(2)-O(8)	120(2)
O(7)#1-Pb(1)-O(8)	78.6(6)	O(9)-B(2)-O(8)	118(2)
O(6)#2-Pb(2)-O(6)	179.999(4)	O(4)-B(3)-O(2)#9	131(3)
O(6)#2-Pb(2)-O(2)	86.8(7)	O(4)-B(3)-O(6)#4	115(3)
O(6)-Pb(2)-O(2)	93.2(7)	O(2)#9-B(3)-O(6)#4	113(2)
O(6)#2-Pb(2)-	93.2(7)		

Table S6. Selected bond distances (Å) and angles (deg) for γ -Pb₅Zn₄B₆O₁₈

Symmetry transformations used to generate equivalent atoms:

#1 x-1,y,z #2 -x,-y+2,-z+1 #3 -x+1,-y+2,-z+1 #4 -x+1,y-1/2,-z+1/2 #5 -x+2,-y+1,-z+1 #6 -x+1,y+1/2,-z+1/2 #7 x+1,y,z #8 x,-y+3/2,z+1/2 #9 x,-y+3/2,z-1/2

Figure S1. XRD patterns of $Pb_5Zn_4B_6O_{18}$ polymorphs. (Denotation \star represents the $PbZn_2B_2O_6$ phase.)

Figure S2. The $Zn_2BO_8 \cdot 2BO_3$ double layer in α - and β -Pb₅Zn₄B₆O₁₈, (a)&(d); The $Zn_2BO_8 \cdot BO_3$ monolayer in α - and β -Pb₅Zn₄B₆O₁₈, (b),(c)&(e),(f).

Figure S3. The tunnels in α - and β -Pb₅Zn₄B₆O₁₈.

Figure S4. Zn_2BO_8 rings in α -Pb₅Zn₄B₆O₁₈ (a), (b), (c) and (d); β -Pb₅Zn₄B₆O₁₈ (e) and γ -Pb₅Zn₄B₆O₁₈ (f).

Figure S5. The environments of the Pb atoms in α -Pb₅Zn₄B₆O₁₈ (a), β -Pb₅Zn₄B₆O₁₈ (b), and γ -Pb₅Zn₄B₆O₁₈ (c).

Figure S6. XRD patterns of samples at 500 °C and after melting. (PbZn₂B₂O₆, PDF-#,

19-0709; $Pb_4Zn_2B_{10}O_{21}$, PDF-#, 19-0710)

Figure S7. IR Spectroscopy of α -Pb₅Zn₄B₆O₁₈, β -Pb₅Zn₄B₆O₁₈ and γ -Pb₅Zn₄B₆O₁₈.

Figure S8. Absorption spectra for α -Pb₅Zn₄B₆O₁₈, β -Pb₅Zn₄B₆O₁₈ and γ -Pb₅Zn₄B₆O₁₈

Figure S9. The calculated XRD patterns of $Pb_5Zn_4B_6O_{18}$ polymorph.