Sample	Pore volume (cm ³ g ⁻¹)			$SSA^{c}(m^2 g^{-1})$	
	V_{total}	V _{micro} ^a	$V_{\text{meso}}{}^{\text{b}}$	S _{BET}	S _{ext} ^a
Sn-Beta-200-AIE-cal	0.40	0.13	0.27	578	255
Sn-Beta-200-DC	0.23	0.11	0.12	388	117
Sn-Beta-150-AIE-cal	0.33	0.14	0.19	577	252
Sn-Beta-150-DC	0.27	0.12	0.15	416	124

Table S1 Physicochemical properties of Sn-Beta samples

^a Calculated by *t*-plot method

^b V_{meso}=V_{total} - V_{micro}

 $^{\rm c}$ Specific surface area (SSA) was determined by N_2 adsorption at 77 K.

Table S2 ² ⁹Si MAS NMR spectra deconvolution for different Sn-Beta zeolites

Sn-Beta-150-F				Sn-Beta-200			
δ (ppm)	attribution	area (%)	-	δ (ppm)	attribution	area (%)	
-	-	-		-94.9	Q ²	5.58	
-101.4	Q ³	4.79		-103.0	Q ³	24.37	
-104.6		7.22		-111.6	Q ⁴	70.04	
-108.0	Q ⁴	13.77					
-111.7		48.29					
-115.5		25.33					

dimethylcyclohexanaminium iodide

Figure S2 XRD patterns (A) of the samples crystallized at 413 K (a), 423 K (b) and 433 K (c). SEM images of the samples crystallized at 423 K (B) and 433 K (C). Other crystallization conditions: $1 \text{ SiO}_2 : 0.5 \text{ M}_2\text{Cy}_2\text{OH} : 0.01 \text{ SnCl}_4 : 0.05 \text{ NaOH} : 22 \text{ H}_2\text{O};$ 5 wt% seed; time, 14 d.

Figure S3 XRD patterns (A) of the samples crystallized with a Na/Si ratio of 0.04 (a), 0.05 (b), 0.08 (c), 0.10 (d) and 0.15 (e), respectively. SEM images of the samples crystallized with a Na/Si ratio of 0.05 (B), 0.08 (C), 0.10 (D) and 0.15 (E), respectively. Other crystallization conditions: $1 \text{ SiO}_2 : 0.5 \text{ M}_2\text{Cy}_2\text{OH} : 0.01 \text{ SnCl}_4 : (0.04 - 0.15) \text{ NaOH} : 22 \text{ H}_2\text{O}; 5 \text{ wt}\%$ seed; temp., 413 K; time, 14 d.

Figure S4 XRD patterns of the samples crystallized with a H₂O/Si ratio of 19 (a), 15
(b), 10 (c), 7 (d), respectively. Other crystallization conditions: 1 SiO₂ : 0.5 M₂Cy₂OH :
0.01 SnCl₄ : 0.08 NaOH : (7 - 19) H₂O; 5 wt% seed; temp., 413 K; time, 7 d.

Figure S5 XRD patterns of the samples crystallized for 2 d (a), 3 d (b), 5 d (c), 6 d (d), 7 d (e) and 10 d (f), respectively. Other crystallization conditions: 1 SiO₂ : 0.5 M_2Cy_2OH : 0.01 SnCl₄ : 0.08 NaOH : 7 H₂O; 5 wt% seed; temp., 413 K.

Figure S6 XRD patterns (A) and SEM images (B) of the samples obtained with a Si/Sn ratio of 200 (a), 150 (b), 80 (c), 60 (d), respectively. Other crystallization conditions: $1 \text{ SiO}_2 : 0.5 \text{ M}_2\text{Cy}_2\text{OH} : (0.005 - 0.017) \text{ SnCl}_4 : 0.08 \text{ NaOH} : 7 \text{ H}_2\text{O}; 5 \text{ wt}\%$ seed; temp., 413 K; time, 7 d.

Figure S7 XRD patterns of as-synthesized Sn-Beta-150-F.

Figure S8 XRD patterns of of Sn-Beta-150 (A) and Sn-Beta-200 (B) in as-made form (a), directly calcined form (b), and ion-exchanged and subsequently calcined form (c), respectively.

Figure S9 N_2 adsorption isotherms of Sn-Beta-150 (A) and Sn-Beta-200 (B) in directly calcined form (a), and ion-exchanged and subsequently calcined form (b).