
1	Supporting information
2	
3	MOF – cation exchange resin composites and their use for water decontamination
4	
5 6	Ping He, ^a Kok-Giap Haw, ^a Jiawang Ren, ^a Qianrong Fang, ^a Shilun Qiu, ^a , Valentin Valtchev ^{a,b*}
7	
8 9	^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.
10 11	
12	
13	E-mail : valentin.valtchev@ensicaen.fr
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

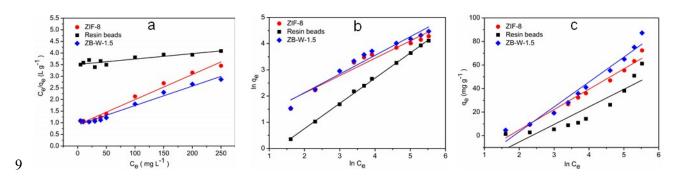
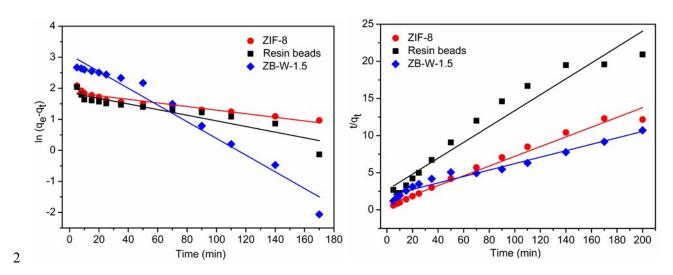
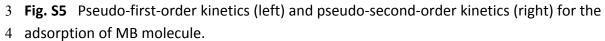
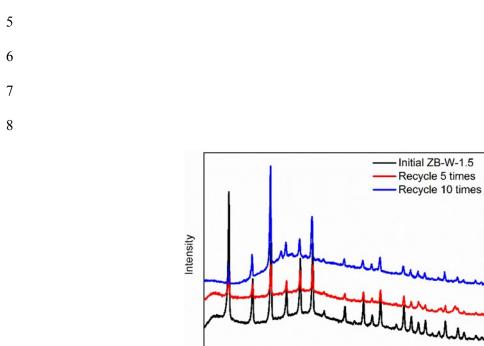


Fig. S2 Plots of absorbance of the MB (left) and OTC (right) solutions with respect to the 12 concentrations at λ_{max} of 600 and 368 nm, respectively.


4 Fig.S3 Nitrogen sorption isotherms of resin beads, ZB-W-1.5 and ZIF-8. (Adsorption - full symbols;

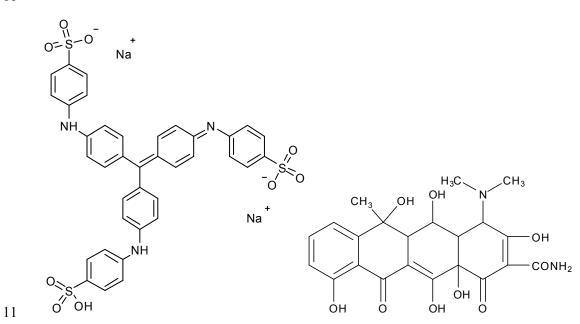

5 Desorption - empty symbols).

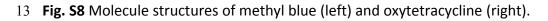


- 11 isotherms (25 °C, $C_0 = 5-250 \text{ mg L}^{-1}$, ZIF-8=0.2 g L⁻¹, resin beads=1 g L⁻¹, ZB-W-1.5=1 g L⁻¹).

5 10 15 20 25 30 35 40 2Theta (degree)

9


1


10 Fig. S6 Powder XRD patterns of the initial ZB-W-1.5 and ZB-W-1.5 after 5 and 10 adsorption-

11 desorption cycles.

7 Fig. S7 Optical photograph of the composite adsorbent collected after adsorption at the initial
8 concentrations ranging from 5 to 250 mg L⁻¹ (from left to right).

