Realizing a Stable High Thermoelectric $zT \sim 2$ over a Broad Temperature Range in Ge_{1-x-y}Ga_xSb_yTe – via Band Engineering and Hybrid Flash-SPS Processing

Bhuvanesh Srinivasan^{a,b*}, Alain Gellé^c, Francesco Gucci^b, Catherine Boussard-Pledel^a, Bruno Fontaine^a, Régis Gautier^a, Jean-François Halet^a, Michael J. Reece^b and Bruno Bureau^a

^a University of Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France.

- ^b School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom.
- ^c University of Rennes, CNRS, IPR UMR 6251, F-35000 Rennes, France.
- * Correspondence <u>bhuvanesh.srinivasan@univ-rennes1.fr</u>; jean-francois.halet@univ-rennes1.fr

Synopsis – Supporting Information

- 1. SPS vs Hybrid Flash-SPS
- 2. DSC Curves
- 3. Thermal Diffusivity, D
- 4. Estimation of Lorenz number, L
- 5. Electronic (κ_e) and lattice (κ_{latt}) thermal conductivities
- 6. *zT* for Ge_{0.90}Ga_{0.10}Te
- 7. zT for $Ge_{0.96}Ga_{0.02}Sb_{0.02}Te$ and $Ge_{0.94}Ga_{0.02}Sb_{0.04}Te$
- 8. Transport properties for Ge_{0.90}Ga_{0.02}Sb_{0.08}Te Hybrid Flash-SPS Vs SPS
- 9. Band folding in GeTe super-cell
- 10. *zT* for Ge_{0.90}Sb_{0.10}Te

1. SPS vs Hybrid Flash-SPS

The schematics of the experimental set-up and the current flow paths for SPS (graphite punches and die), Flash-SPS (graphite punches and no die) and Hybrid Flash-SPS (graphite punches and a thin walled stainless steel die) configurations are shown in Figure S1.

Figure S1. Flow of current in SPS (*a*, *b*); Flash-SPS (*c*); and Hybrid Flash-SPS (*d*) configurations. Information pertaining to each configuration are tabulated below in *Table S1*.

Configurations	Figure (a)	Figure (b)	Figure (c)	Figure (d)
Description / Notation	SPS, graphite punches and die	SPS, graphite punches and die	Flash-SPS, graphite punches and no die	'Hybrid' Flash- SPS, graphite punches and a <u>thin walled</u> <u>stainless steel die</u>
Sample Resistivity	> 100 μΩm	< 10 μΩm	< 10 μΩm	< 10 μΩm
Sample Current Density	< 10 A/cm ²	10 – 400 A/cm ²	> 400 A/cm ²	> 400 A/cm ²
Typical Heating Rate	~ 100 °C/min		~ 10,000 °C/min	

2. DSC Curves

Figure S2. DSC curves for $Ge_{1-x}Ga_xTe$ (x = 0.02) and $Ge_{1-x-y}Ga_xSb_yTe$ (x = 0.02; y = 0.10) samples. For pristine GeTe, the transition temperature was around 700 K, which reduced to 630 K for Ga-doped GeTe and further to 580 K for Ga-Sb codoped GeTe.

3. Thermal Diffusivity D

Figure S3. Temperature-dependent thermal diffusivity, D for $Ge_{1-x}Ga_xTe$ (x = 0.00 - 0.07) and $Ge_{1-x-y}Ga_xSb_yTe$ (x = 0.02; y = 0.08, 0.10) samples.

4. Estimation of Lorenz number L

Figure S4. Temperature dependence of the Lorenz number (L) for $Ge_{1-x}Ga_xTe$ (x = 0.00 - 0.07) and $Ge_{1-x-y}Ga_xSb_yTe$ (x = 0.02; y = 0.08, 0.10) samples, calculated by fitting the respective Seebeck coefficient values.

5. Electronic (κ_e) and lattice (κ_{latt}) thermal conductivities

Figure S5. Temperature-dependent (a) electronic (κ_e) thermal conductivity and (b) lattice (κ_{latt}) thermal conductivity, for $Ge_{1-x}Ga_xTe$ (x = 0.00 - 0.07) and $Ge_{1-x-y}Ga_xSb_yTe$ (x = 0.02; y = 0.08, 0.10) samples.

6. *zT* for Ge_{0.90}Ga_{0.10}Te

Figure S6. Temperature-dependent figure of merit, zT for $Ge_{1-x}Ga_xTe$ (x = 0.10) sample.

7. *zT* for $Ge_{0.96}Ga_{0.02}Sb_{0.02}Te$ and $Ge_{0.96}Ga_{0.02}Sb_{0.04}Te$

Figure S7. Temperature-dependent zT for $Ge_{0.96}Ga_{0.02}Sb_{0.02}Te$ and $Ge_{0.94}Ga_{0.02}Sb_{0.04}Te$ samples.

8. Transport properties for Ge0.90Ga0.02Sb0.08Te - Hybrid Flash-SPS Vs SPS

Figure S8. Temperature-dependent electrical and thermal transport properties for Ge_{0.90}Ga_{0.02}Sb_{0.08}Te sample prepared by SPS and Hybrid Flash-SPS.

9. Band folding in GeTe super-cell

Figure S9. Brillouin zone of the irreducible cell (black) and several Brillouin zone of the 4 x 4 x 4 c-GeTe super-cell (red, green, blue). The orange point indicate the approximate position of the second valence band maximum.

For the 4 x 4 x 4 c-GeTe super-cell, the reciprocal vectors (and the Brillouin zone) are four times smaller. To understand where the Σ direction is folded, one can draw the adjacent Brillouin zones. The Σ direction correspond to a path Γ KX'K'' Γ '' (where prime and double prime indicate nearest and next nearest Brillouin zone special points). What can be confusing is that the K point for the first zone (red) correspond to the U' point of the adjacent zone (green).

To study the band structure of a super-cell in the Σ direction, one needs to represent the path Γ KX' (or equivalently the two paths Γ K and UX). However, for the 4 x 4 x 4 super-cell, the maximum is located on the Γ K path, which is the one that is actually considered in our computations. But the case of 3 x 3 x 3 super-cell is quite different, where the maximum is located on the UX path.

Figure S10. Band structure of the $4 \times 4 \times 4$ c-GeTe super-cell along the Σ direction. The L maximum is folded on the Γ point. The second maximum is located just after the K'' point and is thus folded just before the K point.

10. *zT* for Ge_{0.90}Sb_{0.10}Te

Figure S11. Temperature-dependent figure of merit, zT for Hybrid Flash-SPSed Ge_{1-x}Sb_xTe (x = 0.10) sample.