Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Carve Design of MoS₂ Nanostructures by Controlling 3D MoS₂ Nanomasks

Zechen Liu,^a, Dingbin Xiao,^b, Hongyang Huang,^a Jinying Zhang^{a,*} and Chunming Niu^a

^aCenter of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation

and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, China.

^b State Grid Hunan Maintenance Company, Changsha City, Hunan Province, Tianxin District, Xins

hao East Road 339.

*E-mail: jinying.zhang@mail.xjtu.edu.cn (J. Zhang)

Experimental details

Material Synthesis

Synthesis of MoO₃ nanobelts: The MoO₃ nanobelts (MoO₃ NBs) were produced according to a reported hydrothermal method.¹³ Sodium molybdate dihydrate (Na₂MoO₄·2H₂O, chemically pure reagent, Sinopharm, 3.36 g) was dissolved into 70 ml of deionized water. Nitric acid (chemically pure reagent, Sinopharm, 65wt%, 4 ml) was added to the solution to keep the pH value at 1. The solution was transferred into polytetrafluoroethylene lined stainless steel reactors and reacted in an oven at 180 °C for 20 h. The precipitate was collected by filtration and rinsed by deionized water several times and then dried at 60 °C to give MoO₃ nanobelts.

In situ growth of 3D MoS₂ nanomasks: The sample of MoO₃ NBs (0.32 g) was set in the middle of the CVD quartz tube and the sample of sublimed sulfur (chemically pure reagent, Sinopharm, 4 g) was put close to the inlet of the CVD quartz tube. The CVD tube was flushed by pure Ar with a flow rate of 500 sccm for 15 min and then heated to 300 °C at a heating rate of 20 °C/min in an atmosphere of pure H₂ with a flow rate of 200 sccm. The sublimed sulfur was then slowly moved to the hot area of furnace with temperature of 300 °C for 45 min and then set back to the original position. The sample was cooled to room temperature while being flushed by pure Ar with a flow rate of 100 sccm to give MoS₂ 3D nanomasks on the surface of MoO₃ NBs to yield MoO_x@p-MoS₂ NBs. Nanocarving of encapsulated molybdenum oxides: The $MoO_x@p-MoS_2$ NBs were annealed at 800 °C for 60 min with a heating rate of 20 °C/min in a CVD quartz tube while being flushed by pure Ar with a flow rate of 100 sccm. The sample was cooled to room temperature in an Ar atmosphere to give c-MoO₂@MoS₂ NBs.¹²

Nanocarved MoS₂ structures (MoS₂NFs@MoS₂NTs): The c-MoO₂@MoS₂ NBs (50mg) was sealed with extra amount of sublimed sulfur in an H-shape glass tube under a vacuum of 1.7×10^{-5} Pa. The sample was put in a muffle stove and heated to 500 °C with a heating rate of 1 °C/min for one week, and then cool in oven to give nanotubes with extra inside sulfur (S+MoS₂@MoS₂NTs). The extra sulfur was evacuated in a pressure-resistant bottle at 160 °C for 8 h in vacuum to give nanocarved MoS₂ flowers inside MoS₂ nanotubes (MoS₂NFs@MoS₂NTs). Characterizations

Raman spectroscopy was taken in a backscattering geometry using a single monochromator with a microscope (Reinishaw inVia) equipped with a CCD array detector (1024 × 256 pixels, cooled to -70 °C) and an edge filter. The spectral resolution and reproducibility were determined to be better than 0.1 cm⁻¹. The samples were excited by a 633 nm He–Ne ion laser in air. The SEM images were taken by a FEI Quanta 250 scanning electron microscope. HRTEM images were acquired by a JEOL JEM-2100 transmission electron microscope (TEM; acceleration voltage: 200 kV) and a FEI Titan G² 60-300 transition electron microscope equipped with a field-emission gun (acceleration voltage: 300 kV). X-ray diffraction patterns were obtained from a Bruker D2 PHASER using Cu/Ka radiation (λ =1.5418 Å) at 40 kV and 30 mA. N_2 adsorption-desorption isotherms were conducted on a Quantachrome Autosorb-iQ automatic surface area and pore size distribution analyzer at liquid N₂ temperature (-196 °C). The specific surface areas were determined from the linear portion of the BET plot. The average pore diameters were calculated from desorption branch adsorption the of the N_2 isotherm using the Barrett-Joyner-Halenda (BJH) method.

Electrochemical performance evaluation

The electrochemical performances of the carving designed MoS_2 nanostructures as anode materials were measured with a half cell lithium ion battery configuration. The active materials were well mixed with Super P carbon black and poly (acrylic acid) (Mx =100 000, Sigma-Aldrich) at a weight ratio of 70:20:10 on copper foil. The CR2025 coin-type cells were constructed in an argon-filled glovebox (Lab2000, Etelux, China) with both moisture and oxygen levels less than 0.1 ppm using Li foils as counter electrodes, Cellgard 2400 microporous membranes as separators, and 1.0 M LiPF₆ in a mixture of ethylene carbonate and dimethyl carbonate (1:1, v/v) as electrolytes. The galvanostatic charge and discharge experiments were performed on a NEWARE multichannel battery test system in a 25 °C incubator. The mass of active materials was calculated from the copper foil before and after loading. The voltage profiles of MoS₂NFs@MoS₂NTs anodes during the first, second, third, fifth, and 10th cycle were performed at a current rate of 100 mA g⁻¹ between 0.01 and 3 V. Cyclic voltammetry (CV) measurements were performed on an electrochemical station (PGSTAT 302N, Metrohm, Switzerland) in a voltage window of 0.01-3.00 V at a scan rate of 0.2 mV/s.

Figure S1 (a) SEM images and (b) TEM images of MoO_3 NBs

Figure S2 (a) SEM images and (b) TEM images of MoO_x@p-MoS₂ NBs

Figure S3 (a) (b) TEM images of c-MoO₂@MoS₂ NBs

Figure S4 the sublimation products attached to the glass flask

Figure S5 XRD spectra of the sublimation products attached to the glass flask and standard XRD

pattern of sulfur

Figure S6 XPS curves of the Mo 3d (a) and S 2p (b) from $c-MoO_2@MoS_2$ NBs,

S+MoS₂@MoS₂NTs and MoS₂NFs@MoS₂NTs.

Figure S7 Nitrogen adsorption and desorption isotherms of MoO₃ NBs (black), MoO_x@p-MoS₂

NBs (red), c-MoO₂@MoS₂ NBs (blue) and MoS₂NFs@MoS₂NTs (purple). The corresponding BJH distributions are shown in the inset.

Table S1 Summaries of the specific surface areas, pore volumes and average porediameters of MoO3 NBs, $MoO_x@p-MoS2$ NBs, c-MoO2@MoS2 NBs andMoS2NFs@MoS2NTs

Sample	BET Surface area	BJH Pore volume	Average pore
	(m ² /g)	(cm ³ /g)	diameter (nm)
MoO ₃ NBs	10.70	0.12	1.87
MoO _x @p-MoS ₂ NBs	11.48	0.15	2.52
c-MoO ₂ @MoS ₂ NBs	11.02	0.15	3.94
MoS2NFs@MoS2NTs	16.22	0.16	3.72

Figure S8 HRTEM images of MoS₂NFs@MoS₂NTs (a) after lithiation and (b) after delithiation.

Figure S9 Raman spectra of MoS₂ (black), MoS₂NFs@MoS₂NTs (pink), MoS₂NFs@MoS₂NTs

after delithiation (blue), and lithiation (red).