High Quantum Yield and Unusual Photoluminescence Behaviour in Tetrahedral Manganese (II) Based on Hybrid Compounds

Yan-Li Wei,^a Jing Jing,^a Chao Shi,^b Heng-Yun Ye,^b Zhong-Xia Wang^a and Yi Zhang^{*a,b}

^a Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China

^b Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China

Fig. S1 Infrared (IR) spectra of solids **1** (a) and **2** (b) in KBr pellet recorded on a Shimadzu model IR-60 spectrometer at room temperature.

Fig. S2 Experimental powder diffraction (PXRD) patterns of compounds **1** (a) and **2** (b), which match very well with the simulated patterns in terms of the crystal structures at 293 K, respectively.

Fig. S3 TGA curves for 1 (a) and 2 (b).

Fig. S4 The asymmetric unit of compounds 1 (a) and 2 (b).

Although we failed to obtain the high temperature structures of **1** and **2**, we collected cell parameters using a Rigaku CCD diffractometer with Mo-Ka radiation. The result is that the cell parameters of **1** transformed from monoclinic crystal system $(P2_1/c)$ with a = 12.526(3) Å, b = 12.021(2) Å, c = 13.124(3), $a = \gamma = 90.00(0)^\circ$, $\beta = 96.99(3)^\circ$, V=1961.5(7) in LTP to orthorhombic crystal system with a = 12.38(2) Å, b = 13.22(2) Å, c = 24.89 (4) Å, $a = \beta = \gamma = 90.00(0)^\circ$, V=4071(11) in HTP. As respect to **2**, it crystallized in the orthorhombic crystal system in both phases, but the cell parameters transformed from a = 12.0944(6) Å, b = 12.6583(6) Å, c = 23.3484(11) Å, $a = \beta = \gamma = 90.00(0)^\circ$, V=3574.5(3) in LTP to a = 9.20(4) Å, b = 13.01(6) Å, c = 15.57 (8) Å, $a = \beta = \gamma = 90.00(0)^\circ$, V=1863(15) in HTP. The change of the single crystal cell parameters were consistent with those of PXRD on polycrystalline powders **1** and **2**, which further confirmed that the high temperature unit cell parameters of **1** and **2** were valid.

Fig. S6 The absorption spectra of compounds 1 and 2.

Fig. S7 The quantum yield and the lifetime of 1.

Fig. S8 The quantum yield and the lifetime of 2.

Fig. S9 Variable-temperature fluorescence spectra of 1 (a) and 2 (b).

Fig. S10 The emission spectra of 1 (a) at the excitation wavelength of 360 nm, 382 nm, 434 nm, 450 nm and 460 nm and 2 (b) at 371 nm, 380 nm, 423 nm, 440 nm and 454 nm.

Fig. S11 Transparent thin films of 1 (a) and 2 (b) were fabricated on PET substrates plane by spin-coating method.

Compound	1	2
Molecular formula	$C_{12}H_{28}Cl_4MnN_2$	$C_{10}H_{24}Cl_4MnN_2$
T/K	293 K	293 K
Formula weight	397.10	369.05
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/c$	Pbca
<i>a</i> / Å	12.526 (3)	12.0944 (6)
b / Å	12.021 (2)	12.6583 (6)
<i>c</i> / Å	13.124 (3)	23.3484 (11)
$V/ \text{\AA}^3$	1961.6 (7)	3574.5 (3)
Ζ	4	8
$D_{\rm calc}$ / g·cm ⁻³	1.345	1.372
μ / mm^{-1}	1.21	1.321
F (000)	828.0	1528.0
$T_{\rm min}$ / $T_{\rm max}$	0.686 / 0.713	0.662 / 0.691
Reflns collected	13209	18550
Independent reflns	4460	3229
$R_{\rm int}$	0.053	0.029
No. of parameters	172	156
$R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$	0.0645 / 0.0981	0.065 / 0.1770
R_1, wR_2 [all data]	0.1157 / 0.1121	0.0772 / 0.1853
GOF	1.12	1.04
$\Delta ho^{[c]} / e \cdot Å^{-3}$	0.274 / -0.229	1.264 / -0.860

 Table S1. Crystal data and structure refinements for compounds 1 and 2 at 293 K.

[a] $R_1 = \overline{\Sigma ||F_0|} - |F_c|| / |F_0|$. [b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2]^{1/2}$. [c] Maximum and minimum residual electron density.

Table S2. Selected bond lengths [Å] and angles [°] for compounds 1 and 2 at 293 K.

$C_{12}H_{28}Cl_4MnN_2$			
Mn1-Cl3	2.3374 (10)	Cl3-Mn1-Cl5	115.86 (4)
Mn1-Cl5	2.3567 (11)	Cl3-Mn1-Cl4	111.32 (4)
Mn1-Cl4	2.3570 (11)	Cl5-Mn1-Cl4	104.24 (4)
Mn1-Cl2	2.3945 (11)	Cl3-Mn1-Cl2	108.13 (4)
N2-C4	1.477 (4)	Cl5-Mn1-Cl2	109.05 (4)
N2-C12	1.478 (5)	Cl4-Mn1-Cl2	107.97 (4)
N2-C13	1.496 (5)	C4-N2-C12	112.4 (3)
N1-C5	1.474 (4)	C4-N2-C13	110.8 (3)
N1-C2	1.481 (4)	C12-N2-C13	112.0 (3)
N1-C6	1.492 (4)	C5-N1-C2	111.3 (3)
C4–C7	1.510 (5)	C5-N1-C6	110.9 (3)
C2-C10	1.503 (6)	C2-N1-C6	111.4 (3)
C7-C16	1.528 (6)	N2-C4-C7	111.1 (3)

C5-C14	1.485 (6)	N1-C2-C10	110.1 (3)
C12-C15	1.483 (6)	C4-C7-C16	111.1 (4)
C9-C10	1.503 (7)	N1-C5-C14	111.2 (3)
C9-C14	1.495 (6)	C15-C12-N2	111.1 (4)
C15-C16	1.488 (7)	C10-C9-C14	110.4 (4)
		C9-C10-C2	111.4 (4)
		C5-C14-C9	112.0 (4)
		C16-C15-C12	111.0 (4)
		C15-C16-C7	110.3 (4)
C ₁₀ H ₂₄ Cl ₄ MnN ₂	1		
Mn1–Cl4	2.3408 (16)	Cl4-Mn1-Cl5	114.20 (7)
Mn1-Cl5	2.3488 (16)	Cl4-Mn1-Cl3	113.17 (6)
Mn1–Cl3	2.3599 (14)	Cl5-Mn1-Cl3	106.05 (6)
Mn1–Cl2	2.3918 (14)	Cl4-Mn1-Cl2	106.38 (6)
C8-N2	1.457 (8)	Cl5-Mn1-Cl2	104.53 (6)
C8–C2	1.496 (10)	Cl3-Mn1-Cl2	112.29 (6)
C9-N1	1.381 (9)	N2-C8-C2	106.5 (6)
N2-C12	1.401 (9)	C12-N2-C8	118.8 (7)
N2-C1	1.501 (9)	C12-N2-C1	117.8 (7)
N1-C6	1.439 (9)	C8-N2-C1	106.2 (6)
N1-C4	1.451 (8)	C9-N1-C6	122.9 (6)
C3-C1	1.414 (11)	C9-N1-C4	122.0 (6)
C3–C2	1.510 (11)	C6-N1-C4	110.3 (6)
C6-C10	1.459 (11)	C1-C3-C2	108.8 (6)
C4-C11	1.467 (10)	C8-C2-C3	104.3 (6)
		C3-C1-N2	108.0 (6)
		N1-C6-C10	105.6 (6)
		N1-C4-C11	105.3 (6)
		C11-C10-C6	108.5 (7)
		C10-C11-C4	108.7 (7)

Table S3. Hydrogen-bond parameters (Å, °) for compounds **1** and **2** at 293 K.

	D−H···A	H···A	D····A	D−H···A
$C_{12}H_{28}Cl_4MnN_2$	N1-H1A…Cl5	2.37	3.309(3)	159.5
	N2-H2C···Cl2	2.20	3.174(3)	177.0
C ₁₀ H ₂₄ Cl ₄ MnN ₂	N1-H1C····Cl3	2.69	3.651(9)	165.2
	N2-H2C····Cl2	2.35	3.330(8)	173.5