Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Mass Production of Mn²⁺-Doped CsPbCl₃ Perovskite Nanocrystals with High

Quality and Enhanced Optical Performance

Wenna Liu^{1,2ζ}, Jinju Zheng^{2ζ}, Sheng Cao³, Lin Wang², Fengmei Gao², Kuo-Chih Chou¹,

Xinmei Hou^{1,*} and Weiyou Yang^{2,*}

¹ State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing

100083, P.R. China.

² Institute of Materials, Ningbo University of Technology, Ningbo City, 315016, P.R. China.

³ Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.

Corresponding Author E-mails: houxinmeiustb@ustb.edu.cn (X. Hou)

weiyouyang@tsinghua.org.cn (W. Yang)

Figure S1. (a) TEM image and (b) XRD pattern of Mn²⁺:CsPbCl₃ NCs prepared by scaling the reactant amounts up to 20 times. The inset in (a) is the corresponding HRTEM image.

Figure S2. TEM images of the Mn²⁺:CsPbCl₃ NCs prepared by one step microwave irradiation method with Pb-to-Mn molar feed ratio of 1:2.5 (a), 1:5 (b), 1:10 (c), and 1:15 (d). The insets are the corresponding PL images excited by 365 nm UV light. Copyright from Reference [1] (<u>https://www.ncbi.nlm.nih.gov/pubmed/29200265</u>).

Figure S3. Typical size distributions of samples synthesized at different temperature (a) 150, (b) 170, (c) 190 and (d) 210 °C.

Sample	T ₁ (ms)	A ₁ (%)	T ₂ (ms)	A ₂ (%)	T _{ave} (ms)
150 °C	1.76	100	/	/	1.76
170 °C	1.74	100	/	/	1.74
190 °C	1.64	100	/	/	1.64
210 °C	1.63	90.75	0.52	9.25	1.52

Table S1. The Mn PL decay parameters of the samples synthesized at different reaction temperatures.

Figure S4. PL excitation spectrum of the Mn²⁺:CsPbCl₃ NCs with Mn/Pb feed ratio of 1/1 synthesized at 190 °C.

Table S2: The typically reported PLQY of $Mn^{2+}:CsPbCl_3$ prepared by different method at various temperatures.

Synthetic method	Reaction temperature (°C)	PLQY (%)	References
Microwave Irradiation	/	26	1
Hot Injection	170	60	2
Hot Injection	185	27	3
Hot Injection	200	60	4
Hot Injection	170	54	5
Hot Injection	180	27	6
Hot Injection	190	60	7
Supersaturated Recrystallization	RT	20	8
Microwave-Assisted Hot Injection	190	65	This work

Figure S5. Repeated measurments of the PL QY for the sample syntheized at 190 °C with the feed ratio of Mn/Pb at 1/1.

Figure S6. The decay factors of the filter applied for measuring the PL QY.

Table S3. The Mn²⁺ concentrations (relative to Pb²⁺) in various Mn²⁺:CsPbCl₃ NCs synthesized at 190 °C with different feed amounts of MnCl₂.

Feed ratio of Mn/Pb	0.2/1	0.5/1	1/1	1.5/1	2/1	3/1
Mn ²⁺ concentrations	0.9%	2.6%	6.6%	12.8%	20.5%	32.5%

Figure S7. Typical TEM images of Mn^{2+} :CsPbCl₃ NCs with different feed ratios of Mn/Pb: (a) 0.2/1, (b) 0.5/1, (c) 1/1 (d) 1.5/1, (e) 2/1, (f) 3/1. The down-right insets are the corresponding HRTEM images, and the up-right insets are the corresponding digital photographs of the samples excited under UV light.

Figure S8. Size distributions of Mn^{2+} :CsPbCl₃ NCs with different feed ratios of Mn/Pb: (a) 0.2/1, (b) 0.5/1, (c) 1/1 (d) 1.5/1, (e) 2/1, (f) 3/1.

Figure S9. The XRD patterns of Mn²⁺:CsPbCl₃ NCs synthesized with different amounts of MnCl₂.

Sample	T ₁ (ms)	A ₁ (%)	T ₂ (ms)	A ₂ (%)	T _{ave} (ms)
0.2/1	1.86	100	/	/	1.86
0.5/1	1.85	100	/	/	1.85
1/1	1.64	100	/	/	1.64
1.5/1	1.58	100	/	/	1.58
2/1	1.53	100	/	/	1.53
3/1	1.46	71.49	0.66	28.51	1.34

Table S4. Mn²⁺ PL decay parameters of Mn²⁺:CsPbCl₃ NCs with different feed ratios of Mn/Pb.

T (K)	Exciton emission peak (nm)	Exciton emission intensity (a.u.) ^a	Mn ²⁺ emission peak (nm)	Mn ²⁺ emission intensity (a.u.) ^b	τ _{ave} (ms)
80	412	1	617	0.11203	1.98
100	411	0.89383	616	0.12432	1.99
120	410	0.80888	613	0.13015	1.88
140	410	0.78503	612	0.16132	1.75
160	408	0.49635	610	0.27867	1.66
180	408	0.48445	609	0.33165	1.59
200	409	0.30968	608	0.45555	1.51
220	409	0.28223	605	0.54725	1.44
240	409	0.19771	603	0.56862	1.33
260	410	0.14919	602	0.54657	1.28
280	410	0.05526	601	0.46841	1.22
300	410	0.05416	598	0.56476	1.25
320	411	0.01678	595	0.69769	1.20
340	411	0.01229	593	0.79873	1.18
360	411	0.00624	591	0.89723	1.14
380	411	0.00605	590	1	1.09
400	411	0.00001	589	0.86415	0.96

Table S5. The statistics of the peak position and intensity of the exciton and Mn^{2+} emission with the varying of the temperature, and the corresponding lifetime of the Mn^{2+} emission.

^aAfter normalization on the basis of the intensity at 80K.

^bAfter normalization on the basis of the intensity at 380K.

References:

- H. Liu, Z. Wu, H. Gao, J. Shao, H. Zou, D. Yao, Y. Liu, H. Zhang and B. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 42919-42927.
- 2. Q. Wang, X. Zhang, Z. Jin, J. Zhang, Z. Gao, Y. Li and S. F. Liu, ACS Energy Lett., 2017, 2, 1479-1486.
- 3. W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga and V. I. Klimov, J. Am. Chem. Soc., 2016, **138**, 14954-14961.
- 4. D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon and D. H. Son, *Nano Lett.*, 2016, 16, 7376-7380.
- 5. H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang and B. Yang, ACS Nano, 2017, 11, 2239-2247.
- 6. S. Das Adhikari, S. K. Dutta, A. Dutta, A. K. Guria and N. Pradhan, Angew. Chem. Int. Ed., 2017, 129, 8872-8876.
- X. Yuan, S. Ji, M. C. De Siena, L. Fei, Z. Zhao, Y. Wang, H. Li, J. Zhao and D. R. Gamelin, *Chem. Mater.*, 2017, 29, 8003-8011.
- 8. W. J. Mir, M. Jagadeeswararao, S. Das and A. Nag, ACS Energy Lett., 2017, 2, 537-543.