Supporting Information for

Hierarchically Structured CoN/Cu₃N Nanotube Array Supported on

Copper Foam as Efficient Bifunctional Electrocatalyst for Overall

Water Splitting

Jiali Li, Xianggui Kong*, Meihong Jiang, Xiaodong Lei*.

State Key Laboratory of Chemical Resource Engineering, Beijing University of

Chemical Technology, PO Box 98, Beijing 100029, China.

* Corresponding author

E-mail: kongxg@mail.buct.edu.cn; leixd@mail.buct.edu.cn; Tel: +86-10-64455357; Fax: +86-10-64425385.

Fig. S1. XRD pattern of bare CF (curve a), Cu(OH)₂/CF (curve b), Co₂(OH)₂CO₃/Cu(OH)₂/CF (curve c) and NC@CoN/Cu₃N/CF (curve d).

Fig. S2. SEM image of bare CF.

Fig. S3. TEM images of NC@CoN/Cu₃N/CF (with the irregular Cu_3N nanoparticles).

Electrocatalyst	HER $\eta_{10mA/cm}^2$ (mV vs. RHE)	Tafel slope (mV/Dec)	Ref.
NC@CoN/Cu ₃ N/CF	134	99.2	This work
Cu@CoS _x /CF	134	61	28
NiN _x nanotube arrays	~110	127	30
$TiO_2@Co_9S_8$	139	65	31
NC@CuCoN _x /CF	105	76	38
Co ₅ Mo _{1.0} P NSs@NF	173	190	45
NESSP	230	36	46
Co-P film/CF	94	42	47
CuCo ₂ O ₄ /NF	140	108	48

 Table S1. Comparison of the HER activity of NC@CoN/Cu₃N/CF with that of some recently

 reported bifunctional non-precious based electrocatalysts.

	055	0.55		
	OER	OER	T (1 1	Ref.
Electrocatalyst	$\eta_{10mA/cm}{}^2$	${\eta_{50mA/cm}}^2$	(mV/Dec)	
	(mV vs.	(mV vs.		
	RHE)	RHE)		
NC@CoN/Cu ₃ N/CF	257	303	75.7	This
				work
Cu@CoS _x /CF	160	~280		28
CoNi(OH) _x nanotube arrays	280	320	77	30
TiO ₂ @Co ₉ S ₈	139	~283	55	31
NC@CuCoN _x /CF	230	~305	84	38
Co ₅ Mo _{1.0} O NSs@NF	270	~310	54.4	45
NESS	278	~350	83	46
Co-P film/CF	345	~390	47	47
CuCo ₂ O ₄ /NF		~310	68	48

Table S2. Comparison of the OER activity of NC@CoN/Cu₃N/CF with that of some recently reported bifunctional non-precious based electrocatalysts.

Fig. S4. Chronopotentiometry curves for NC@CoN/Cu₃N/CF in (A) HER and (B) OER side at a constant current density of 20 mA/cm².

Fig. S5. CV curves at various scan rates of (A) NC@CoN/Cu₃N/CF, (B) CoN/Cu₃N/CF, (C) CoN/CF and (D) Cu₃N/CF.

Fig. S6. Stability test of CoN/Cu₃N/CF with specified voltage ($j = 20 \text{ mA/cm}^2$) for 2.5 h

Electrocatalyst	OWP potential (V) at 10 mA/cm ²	Ref.
NC@CoN/Cu ₃ N/CF	1.62	This work
Cu@CoS _x /CF	1.50	28
NiN _x (HER) CoNi(OH) _x (OER)	1.65	30
TiO ₂ @Co ₉ S ₈	1.56	31
NC@CuCoN _x /CF	1.62	38
Co ₅ Mo _{1.0} P NSs@NF (HER) Co ₅ Mo _{1.0} O NSs@NF (OER)	1.68	45
NESSP (HER) NESS (OER)	1.74	46
Co-P film/CF	~1.62	47
CuCo ₂ O ₄ /NF	1.61	48

Table S3. Comparison of the OWP activity of NC@CoN/Cu₃N/CF with that of some recently reported bifunctional non-precious based electrocatalysts.

Fig. S7. (A) Low magnification, (B) high magnification SEM images, (C) TEM image and (D)

mapping analysis of the NC@CoN/Cu₃N/CF (OER side) after stability test.

Fig. S8. (A) Low magnification, (B) high magnification SEM images, (C) TEM image and (D)

mapping analysis of the NC@CoN/Cu₃N/CF (HER side) after stability test.

Fig. S9. XRD pattern of NC@CoN/Cu₃N/CF after HER and OER process.

Fig. S10. XPS of Cu (A) and Co (B) envelope in NC@CoN/Cu₃N/CF after HER and OER process.