Supporting Information

Ultrafine Rh nanoparticles decorated MoSe₂ nanoflowers for efficient alkaline

hydrogen evolution reaction

Yuanmeng Zhao^a, Chenlu Yang^a, Guixiang Mao^a, Jun Su^b, Gongzhen Cheng^a and Wei

Luo^a*

^aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei,

430072, P.R. China, Tel.: +86-27-68752366.

*Corresponding author. E-mail addresses: wluo@whu.edu.cn

^bWuhan National Laboratory for Opoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China

Fig. S1 The size distribution histogram of 8.2 wt% Rh-MoSe₂.

Fig. S2 The EDX spectrum of 8.2 wt% Rh-MoSe₂.

Fig. S3 SEM images of Rh-MoSe₂ with different contents of Rh: (a) pure MoSe₂; (b) 2.9 wt%; (c) 8.2 wt% and (d) 12.6 wt% of Rh.

Fig. S4 TEM image of as-synthesized pure MoSe₂.

Fig. S5 TEM image of as-synthesized 2.9 wt% Rh-MoSe₂.

Fig. S6 TEM image of as-synthesized 12.6 wt% Rh-MoSe₂.

Fig. S7 The size distribution histogram of 12.6 wt% Rh-MoSe₂.

Fig. S8 The EDX spectrum of 2.9 wt% Rh-MoSe₂.

Fig. S9 The EDX spectrum of 12.6 wt% Rh-MoSe₂.

Fig. S10 Electrochemical double layer capacitance curves on wt% Rh-MoSe₂ (a) and MoSe₂ (b) with different scan rates from 50 mV s⁻¹ to 10 mV s⁻¹ in 1.0 M KOH.

Fig. S11 XRD patterns of the 8.2 wt% Rh-MoSe₂ nanoflowers after chronopotentiometry test.

Fig. S12 SEM image of the 8.2 wt% Rh-MoSe₂ nanoflowers after chronopotentiometry test.

Fig. S13 TEM image of 8.2 wt% Rh-MoSe₂ nanoflowers after stability testing.

Fig. S14 (a)Polarization curves of MoSe₂ before and after 500 CV cycles. (b) Chronopotentiometric measurements of the HER at 10 mA cm⁻² using MoSe₂ as a catalyst.

Fig. S13. The amount of hydrogen theoretically calculated and experimentally measured versus time for 8.2 wt% Rh-MoSe₂ in 1.0 M KOH.

Table S1.	The raw	material	of $Rh(acac)_3$	and the	corresponding	contents	of Rh in	ı Rh-
MoSe ₂ na	noflower	s.						

Raw material	Rh content in Rh-MoSe ₂		
$Rh(acac)_3(mg)$	Rh (wt%)		
4	2.9		
12	8.2		
20	12.6		

Table S2. Comparison of representative TMDs-based catalysts in 1.0 M KOH.

Catalyst	Substrate	Loading	$\eta_{10}/(mV)$	Reference
		$(mg cm^{-2})$		
Rh-MoSe ₂	GCE	0.3	73	This work
CoSe ₂ /MoSe ₂	GCE	0.204	218	1
CS-MS/rGO-C	GCE	0.57	215	2
MS-CS NTs	GCE	0.57	237	3
Co-WSe ₂ /MWNT	GCE	0.25	241	4
$2D-MoS_2/Co(OH)_2$	GCE	~0.285	128	5
Co_9S_8 (a) MoS_2	GCE	~0.4	145	6
MoS ₂ /NiS	nickel foam	4.9	92	7
MoWSe alloys	GCE	1	262	8
Ni(OH) ₂ /MoS ₂	Carbon cloth	~4.8	80	9

MoSe ₂ @Ni _{0.85} Se	nickel	6.48	117	10	
	foam				
CoS/MoS ₂	GCE	0.18	214	11	
Co ₃ S ₄ /MoS ₂ /Ni ₂ P	GCE	0.18	178	11	
NTs					
Ru/MoS_2	Carbon	1.0	13	12	
	paper				
MoS ₂ NiS MoO ₃	Ti sheet	2	91	13	
MoS ₂ -Ni ₃ S ₂	Nickel	13	98	14	
HNRs/NF	foam				
MoS_2/Ni_3S_2	Nickel	9.7	110	15	
	foam				
Ni-MoS ₂	Carbon	0.89	98	16	
	cloth				
MoS ₂ @Ni/CC	Carbon	4.0	91	17	
	cloth				
HF-MoSP	GCE	0.35	119	18	
Co ₉ S ₈ @MoS ₂ /CNFs	GCE	0.212	190	19	

References

- [1] G. Zhao, P. Li, K. Rui, Y. Chen, S. X. Dou and W. Sun, *Chem. Eur. J.*, 2018, 24, 11158.
- [2] B. Wang, Z. Wang, X. Wang, B. Zheng, W. Zhang and Y. Chen, J. Mater. Chem.A, 2018, 6, 12701.
- [3] X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang and Y. Chen, *J. Mater. Chem. A*, 2018, 6, 7842.
- [4] G. Zhang, X. Zheng, Q. Xu, J. Zhang, W. Liu and J. Chen, J. Mater. Chem. A, 2018, 6, 4793.
- [5] Z. Zhu, H. Yin, C. –T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H.
 –G. Yang, Z. Tang, D. Wang, X. –M. Chen and H. Zhao, *Adv. Mater.*, 2018, 30, 1801171.

[6] J. Bai, T. Meng, D. Guo, S. Wang, B. Mao and M. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 1678.

[7] Z. Zhai, C. Li, L. Zhang, H. –C. Wu, L. Zhang, N. Tang, W. Wang and J. Gong, J.
 Mater. Chem. A, 2018, 6, 9833.

[8] O. E. Meiron, V. Kuraganti, I. Hod, R. Bar-Ziv and M. Bar-Sadan, *Nanoscale*, 2017, 9, 13998.

[9] B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao and J. Jiang, *Nano Energy*, 2017, 37, 74.

[10] C. Wang, P. Zhang, J. Lei, W. Dong and J. Wang, *Electrochim. Acta*, 2017, 246, 712.

[11] H. Lin, H. Li, Y. Li, J. Liu, X, Wang and L. Wang, J. Mater. Chem. A, 2017, 5, 25410.

[12] J. Liu, Y. Zheng, D. Zhu, A. Vasileff, T. Ling and S. –Z. Qiao, *Nanoscale*, 2017,
9, 16616.

[13] C. Wang, B. Tian, M. Wu and J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 7084.

[14] Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357.

[15] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X.Feng, *Angew.Chem.Int. Ed.*, 2016, 55,6702.

[16] J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, Energy Environ. Sci., 2016, 9, 2789. [17] Z. Xing, X. Yang, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2016, 8, 14521.

- [18] A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang and H. Fu, *Nanoscale*, 2016, 8, 11052.
- [19] H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M.
- Zhang, B. Liu, J. Yao and X. Zhang, Adv. Mater., 2015, 27, 4752.