Supporting Information

A New Antimony-Based Organic-Inorganic Hybrid Absorber

with Photoconductive Response

Asma Khan,^{a,b} Shiguo Han,^{a,b} XitaoLiu, ^a Kewen Tao, ^a Dhananjay Dey, ^a Junhua Luo^{a*}

and Zhihua Sun,^{a*}

^{a.} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter

(FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou, Fujian 350002, P. R. China

^{b.} University of Chinese Academy of Sciences (UCAS), Beijing 100190, P. R. China

*Correspondence: jhluo@fjirsm.ac.cn; sunzhihua@fjirsm.ac.cn

Figure S1. PXRD patterns of 1.

Figure S2. TG curve of 1.

Figure S3. The packing structure of 1 viewed along the c-axis direction.

Empirical formula	[(CH ₃) ₃ CNH ₂] ₄ [Sb ₄ I ₁₆]. 2H ₂ O
Formula weight	2814.05
Temperature/K	293.15
Crystal system	Triclinic
Space group	P 1
a/Å	11.142(5)
b/Å	11.794(4)
<i>c</i> /Å	13.105(4)
α/°,	65.193(13),
<i>в</i> /°,	77.627(17)
γ/°	89.043(16)
Volume/ų	1521.6(9)
Z/ρ _{calc} (mg/mm³)	1/3.110
m/mm ⁻¹	9.892
F(000)	1224.0
Theta range for data collection	5.13 to 55.05°
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -17 \le l \le 17$
Reflections collected	47233
Independent reflections	6814 [<i>R_{int}</i> = 0.0563]
Data/restraints/parameters	6814/0/200
Goodness-of-fit on F ²	1.140
Final <i>R</i> indexes [<i>I</i> >2 σ (<i>I</i>)]	$R_1 = 0.0270, wR_2 = 0.0584$
Final R indexes [all data]	$R_1 = 0.0350, wR_2 = 0.0646$

 Table S1. Crystal structure and refinement detail of 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
I ₁	Sb_1	2.8031(8)	I ₇	Sb ₂	2.8761(9)
I ₂	Sb_1	2.8061(9)	I ₈	Sb ₂	2.8995(8)
I ₃	Sb_1	3.1329(12)	N_3	C _{0AA}	1.521(6)
I ₃	Sb_2	3.2281(10)	C _{0AA}	C1	1.513(8)
I ₄	Sb_1	3.3810(10)	C _{0AA}	C ₂	1.500(9)
I ₄	Sb_1	3.3560(9)	C _{0AA}	C_4	1.521(8)
I ₄	Sb_2	3.3378(13)	N_2	C ₅	1.514(7)
I ₅	Sb_1	2.9530(12)	C ₅	C ₆	1.541(10)
I ₅	Sb_2	3.2066(9)	C ₅	C ₇	1.510(9)
I ₆	Sb_2	2.8109(11)	C ₅	C ₈	1.502(10)

Table S2. Bond lengths for 1.

TUNIC	33. Done	angies					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Sb1	13	Sb2	96.79(3)	16	Sb2	17	94.57(3)
Sb1 ¹	14	Sb1	88.86(3)	16	Sb2	18	94.89(3)
Sb2	14	Sb1	87.07(2)	17	Sb2	13	176.012(14)
Sb2	14	Sb1	90.13(3)	17	Sb2	14	89.97(3)
Sb1 ¹	15	Sb2	96.85(3)	17	Sb2	15	93.45(3)
11	Sb1	12	90.21(3)	17	Sb2	18	89.97(3)
11	Sb1	13	92.02(3)	18	Sb2	13	89.32(3)
11	Sb1	14	89.96(3)	18	Sb2	14	92.55(3)
11	Sb1	15	91.94(3)	18	Sb2	15	176.324(14)
12	Sb1	13	90.01(3)	C1	COAA	N3	106.5(5)
12	Sb1	14	176.934(14)	C1	COAA	C4	111.5(5)
12	Sb1	15	93.35(3)	C2	COAA	N3	106.7(5)
13	Sb1	14	86.92(3)	C2	COAA	C1	114.1(6)
15 ¹	Sb1	13	174.793(14)	C2	COAA	C4	110.9(6)
15 ¹	Sb1	14	89.70(3)	C4	COAA	N3	106.7(4)
13	Sb2	14	86.14(3)	N2	C5	C6	105.4(6)
15	Sb2	13	87.18(3)	C7	C5	N2	107.3(5)
15	Sb2	14	86.11(2)	C7	C5	C6	110.7(6)
16	Sb2	13	89.40(3)	C8	C5	N2	106.7(5)
16	Sb2	14	171.272(16)	C8	C5	C6	112.3(6)
16	Sb2	15	86.18(3)	C8	C5	C7	113.7(7)

Table S3. Bond angles for 1