
Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Design of visible-light-response core-shell $Fe_2O_3/CuBi_2O_4$ heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight

Supporting Information

Ming-yang Li, ^a Yu-bin Tang, *a Wei-long Shi, ^{a, b} Fang-yan Chen, *a Yu Shi, ^a and Hao-chen Gu ^a

^b College of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China

Fig. S1 Changes of the characteristic absorption of TC by using 30% Fe₂O₃/CBO as a photocatalyst.

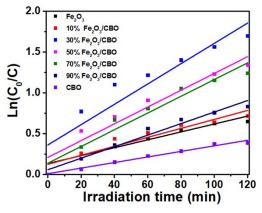
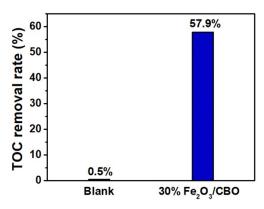



Fig. S2 Kinetic curves of the TC photodegradation with as-prepared photocatalysts under visible light irradiation ($\lambda > 420$ nm).

^a School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China

Fig.S3 TOC removal ratio of TC ($C_0 = 10 \text{ mg/L}$) over the 30% Fe₂O₃/CBO and directly photolysis under visible light irradiation ($\lambda > 420 \text{ nm}$).