Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Electronic Supplementary Information

Ions-induced structural and optical performances evolution in LBO-like crystals: Experimental and theoretical investigation

Yun Yang,^a Shilie Pan^{*,a}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

> *To whom correspondence should be addressed E-mail: slpan@ms.xjb.ac.cn (Shilie Pan)

Fig. S1 Powder X-ray diffraction patterns of $Li_3KB_9O_{15}F$.

(a) (b) Fig. S2 (a) KO_6F polyhedron. (b) $Li_3KO_{15}F$ cluster is formed by three LiO_3F and one KO_6F through sharing F ions.

Fig. S3 The 1D B-O chain in (a) $CsLiB_6O_{10}$ and (b) CsB_3O_5 .

Fig. S4 Crystal structure of CsB₉O₁₄. (a) FBB B₉O₁₇ (b) B₉O₁₆ chain viewed along the *a* axis; (c) The 3D open-framework with 30-MR channels.

Fig. S5 Crystal structure of $AmB_9O_{13}(OH)_4(H_2O)$. (a) FBB, B_9O_{20} ; (b) The 2D layered structure with 18-MR channels in the *ac* plane; (c) The 3D open-framework.

Fig. S6 Crystal structure of NdB₁₈O₂₅(OH)₁₃Br₃. (a) FBB B₉O₂₁; (b) The 2D layered structure viewed along the *a* axis.

Fig. S7 Crystal structure of $Na_2B_6O_{10}$. (a) FBB B_9O_{19} ; (b) The 2D layered structure viewed in the *bc* plane for single chains; (c) and (d) The double-layered structure viewed along the *b* axis.

Fig. S8 Crystal structure of $Na_2B_9O_{15}(H_2O)(H_3O)$. (a) FBB B_9O_{19} ; (b) The 3D open framework formed through sharing O atoms between B_3O_7 and B_6O_{13} clusters, in which big channels are observed along the *b* axis.

Fig. S9 Infrared spectrum of Li₃KB₉O₁₅F.

Fig. S10 The obtained birefringence of $Li_3KB_9O_{15}F$.

Atom	X	у	Z	U_{eq}
Li(1)	-1541(4)	-1193(5)	-555(3)	21(1)
K(1)	0	0	1524(1)	24(1)
B(1)	2063(3)	2969(3)	1887(2)	16(1)
B(2)	2691(3)	2023(3)	2993(2)	14(1)
B(3)	980(3)	3550(3)	733(2)	13(1)
O(1)	1744(2)	2064(2)	2527(1)	22(1)
O(2)	1083(2)	2731(2)	1370(1)	18(1)
O(3)	3295(2)	3956(2)	1812(1)	15(1)
O(4)	628(2)	4446(2)	1135(1)	16(1)
O(5)	2298(2)	1155(2)	3624(1)	14(1)
F(1)	0	0	-130(2)	18(1)

Table S1. Atomic coordinates, equivalent isotropic displacement parameters (Å²) and bond valence sum (BVS) for Li₃KB₉O₁₅F. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 52. Beleeted t	olid distallees (1	(deg) for f	13KD90151.
K(1)-F(1)	2.646(3)	B(1)-O(3)	1.358(3)
K(1)-O(1)	2.808(2)	B(1)-O(1)	1.399(3)
K(1)-O(1)#1	2.808(2)	B(1)-O(2)	1.344(3)
K(1)-O(1)#2	2.808(2)	B(2)-O(1)	1.378(3)
K(1)-O(2)#1	2.862(2)	B(2)-O(4)#3	1.372(3)
K(1)-O(2)#2	2.862(2)	B(2)-O(5)	1.353(3)
K(1)-O(2)	2.862(2)	B(3)-O(2)	1.462(3)
Li(1) -F(1)	1.808(5)	B(3)-O(3)#6	1.481(3)
Li(1)-O(4)#6	1.962(5)	B(3)-O(4)	1.481(3)
Li(1)-O(3)#9	1.982(5)	B(3)-O(5)#5	1.464(3)
Li(1)-O(5)#10	2.074(5)	O(1)#1-K(1)-O(1)#2	90.54(6)
F(1)-K(1)-O(1)	124.88(4)	F(1)-K(1)-O(2)#1	85.07(4)
F(1)-K(1)-O(1)#1	124.88(4)	O(1)-K(1)-O(2)#1	94.04(5)
O(1)-K(1)-O(1)#1	90.54(6)	O(1)#1-K(1)-O(2)#1	48.01(5)
F(1)-K(1)-O(1)#2	124.88(4)	O(1)#2-K(1)-O(2)#1	138.26(6)
O(1)-K(1)-O(1)#2	90.54(6)	F(1)-K(1)-O(2)#2	85.07(4)
O(1)-K(1)-O(2)#2	138.26(6)	O(1)#1-K(1)-O(2)#2	94.04(5)
O(1)#2-K(1)-O(2)#2	48.01(5)	O(2)#1-K(1)-O(2)#2	119.269(13)
F(1)-K(1)-O(2)	85.07(4)	O(1)-K(1)-O(2)	48.01(5)
O(1)#1-K(1)-O(2)	138.26(6)	O(1)#2-K(1)-O(2)	94.04(5)
O(2)#1-K(1)-O(2)	119.269(13)	O(2)#2-K(1)-O(2)	119.269(13)
O(2)-B(1)-O(3)	125.7(3)	O(2)-B(1)-O(1)	114.5(2)
O(3)-B(1)-O(1)	119.8(2)	O(2)-B(3)-O(5)#5	113.5(2)
O(2)-B(3)-O(4)	109.5(2)	O(5)#5-B(3)-O(4)	105.7(2)

Table S2. Selected bond distances (Å) and angles (deg) for $Li_3KB_9O_{15}F$.

O(2)-B(3)-O(3)#6	106.4(2)	O(5)#5-B(3)-O(3)#6	110.9(2)
O(4)-B(3)-O(3)#6	111.0(2)	O(5)-B(2)-O(4)#3	123.7(2)
O(5)-B(2)-O(1)	117.0(2)	O(4)#3-B(2)-O(1)	119.4(2)
F(1)-Li(1)-O(4)#6	108.4(2)	F(1)-Li(1)-O(3)#9	118.2(3)
O(4)#6-Li(1)-O(3)#9	94.5(2)	F(1)-Li(1)-O(5)#10	106.1(2)
O(4)#6-Li(1)-O(5)#10	136.1(3)	O(3)#9-Li(1)-O(5)#10	92.4(2)

Note. Symmetry transformations used to generate equivalent atoms:

#1 -x+y, -x, z	#2 -y, x-y, z	#3 x+1/3, x-y+2/3, z+1/6
#4 -x+y+1/3, y+2/3, z+1/6	#5 -x+y+1/3, -x+2/3, z-1/3	#6 x-1/3, x-y+1/3, z-1/6
#7 -y, -x, z+1/2	#8 -y+2/3, x-y+1/3, z+1/3	#9 -x+y-1/3, y-2/3, z-1/6
#10 -y, -x, z-1/2		

Atoms	1	s	Atoms	1	S
K(1)-F(1)	2.646(3)	0.2486	B(1)-O(3)	1.358(3)	1.0393
K(1)-O(1)	2.808(2)	0.1381	B(1)-O(1)	1.399(3)	1.0688
K(1)-O(1)#1	2.808(2)	0.1381	B(1)-O(2)	1.344(3)	0.9303
K(1)-O(1)#2	2.808(2)	0.1381	Σs		3.0384
K(1)-O(2)#1	2 862(2)	0.1596	B(2)-O(1)	1 378(3)	0.9810
K(1) = O(2) # 2	2 862(2)	0.1596	B(2)-O(4)#3	1 372(3)	0.9960
K(1) O(2)	2.862(2)	0.1596	B(2) O(1)	1 353(3)	1.0499
$\Sigma_{\rm S}$	2.802(2)	1 1416	$\frac{D(2)-O(3)}{\Sigma_8}$	1.355(3)	3 0269
3		1.1110	<u></u> 3		5.0209
Li(1) -F(1)	1.808(5)	0.3969	B(3)-O(2)	1.462(3)	0.7819
Li(1)-O(4)#6	1.962(5)	0.2613	B(3)-O(3)#6	1.481(3)	0.7435
Li(1)-O(3)#9	1.982(5)	0.2469	B(3)-O(4)	1.481(3)	0.7445
Li(1)-O(5)#10	2.074(5)	0.1937	B(3)-O(5)#5	1.464(3)	0.7768
Σs		1.0993	∑s		3.0467

Table S3. Bond valence analysis of $Li_3KB_9FO_{15}$.^{a,b}

- ^a Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).
- ^b Valence sums calculated with the formula: $S_i = \exp[(R_0 R_i)/B]$, where $S_i =$ valence of bond "*i*" and B = 0.37.

Compounds	M-O	М'-О
LiB ₃ O ₅	Li-O:1.986-2.003	
LiCsB ₆ O ₁₀	Li-O: 1.926	Cs-O:3.145-3.552
CsB ₃ O ₅		Cs-O:3.030-3.342
LiK ₃ B ₉ O ₁₅ F	Li-O:1.986-2.003; Li-F: 1.808	К-О :2.808; К-Г: 2.646
BaLiB ₉ O ₁₅ ,	Li-O:1.91-2.76	Ba-O:2.91-3.55
BaNaB ₉ O ₁₅	Na-O:2.29-2.48	Ba-O:2.96-3.56
SrLiB ₉ O ₁₅	Li-O:1.99-2.48	Sr-O:2.84-3.35

Table S4. Cation-O bond distances (Å) for several compounds.

 Table S5. Nine-polymeric fundamental building blocks (FBBs).

Formula	Space group		FBB
CsB ₉ O ₁₄	P222 ₁	B ₉ O ₁₇	9:[(3:2Δ+T)+2(3:3Δ)]
α -Na ₃ B ₉ O ₁₅	$P2_{1}/c$	$B_{9}O_{18}$	9:[(5:4Δ+ T)+(4:2Δ+2T)]
β -Na ₃ B ₉ O ₁₅	$P2_{1}/c$	B ₉ O ₁₉	9:[(5:4\Delta+T)+(3:2\Delta+T)+(1:T)]
$Na_2B_6O_{10}$	$P2_{1}/c$	B ₉ O ₁₉	9:[(5:4\Delta+T)+(3:2\Delta+T)+(1:T)]
$(Na_{0.8}K_{0.2})K_2(B_3O_5)_3$	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
$Na(Na_{0.17}K_{0.83})_2(B_3O_5)_3$	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
$NaK_2(B_3O_5)_3$	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
KB ₃ O ₅	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
LiBaB ₉ O ₁₅	R3c	B ₉ O ₁₉	9:[3(3:2∆+T)]
NaBaB ₉ O ₁₅	R3c	B ₉ O ₁₉	9:[3(3:2∆+T)]
LiSrB ₉ O ₁₅	R3c	B ₉ O ₁₉	9:[3(3:2∆+T)]
$Na_2Cs_2SrB_{18}O_{30}$	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
$Na_2Cs_2BaB_{18}O_{30}\\$	$P2_{1}/c$	B ₉ O ₁₉	9:[3(3:2∆+T)]
Na ₂ B ₉ O ₁₅ (H ₂ O)(H ₃ O)	<i>P</i> 2 ₁	B ₉ O ₁₉	9:[(6:3\Delta+3T)+(3:2\Delta+1T)]
AmB ₉ O ₁₃ (OH) ₄ (H ₂ O)	$P2_{1}/c$	B ₉ O ₂₀	9:[(6:3\Delta+3T)+(3:\Delta+2T)]
SmB ₉ O ₁₃ (OH) ₄ (H ₂ O)	$P2_{1}/c$	B ₉ O ₂₀	9:[(6:3\Delta+3T)+(3:\Delta+2T)]
NdB ₁₈ O ₂₅ (OH) ₁₃ Br ₃	<i>P2/c</i>	B_9O_{21}	9:[(5:2Δ+3T)+(3:Δ+2T)+Δ]

(0141110) 01 1	volume) of 1 DD in a unit con of bevelar compounds						
Compounds	V	N(B ₃ O ₇)	ρ(B ₃ O ₇)	N(BO ₃)	ρ(BO ₃)	N(BO ₄)	ρ(BO ₄)
LiB ₃ O ₅	320.42	4	0.0124	8	0.0249	4	0.0124
SrLiB ₉ O ₁₅	1712.38	18	0.0105	36	0.0210	18	0.0105
BaLiB ₉ O ₁₅	1777.79	18	0.0101	36	0.0202	18	0.0101
BaNaB ₉ O ₁₅	1853.54	18	0.0097	36	0.0194	18	0.0097
Li ₃ KB ₉ O ₁₅ F	1986.44	18	0.0090	36	0.0181	18	0.0090
CsB ₃ O ₅	485.47	4	0.0082	8	0.0164	4	0.0082
LiCsB ₆ O ₁₀	984.4	8	0.0081	16	0.0162	8	0.0081

Table S6. The volume $(Å^3)$ of a single cell and the number and density (per unit volume) of FBB in a unit cell of several compounds