Supporting Information

$Multidimensional\ In_2S_3\text{-}CuInS_2\ Heterostructure\ for$

Photocatalytic Carbon Dioxide Reduction

Jinman Yang^a, Xingwang Zhu^a, Zhao Mo^a, Jianjian Yi^a, Jia Yan^a, Jiujun Deng^a,

Yuanguo Xu^a, Yuanbin She^b, Junchao Qian^c, Hui Xu^{a,*}, Huaming Li^{a,*}

^a.School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P.R. China

^b.State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou,

310014, China

^{c.}School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China

Figure S1. XRD pattern of MIL-68.

Figure S2. Standard XRD patterns of standard In₂S₃ and CuInS₂, XRD patterns of In₂S₃, In₂S₃-CuInS₂-10, In₂S₃-CuInS₂-15 and CuInS₂.

Figure S3. EDX spectrum In_2S_3 .

Figure S4. EDX spectrum of In₂S₃-CuInS₂-10.

Figure S5. EDX spectrum of In_2S_3 -CuInS₂-15.

Figure S6. EDX spectrum of CuInS₂.

Figure S7. Elemental mapping images of In₂S₃-CuInS₂-15.

Figure S8. High-resolution TEM image of In₂S₃-CuInS₂-15.

Figure S9. TEM image of In₂S₃-CuInS₂-10.

Figure S10. N₂ adsorption-desorption isotherms of MIL-68 and In₂S₃-CuInS₂-15.

Figure S11. The Auger electron spectroscopy of Cu.

Figure S12. Mott-Schottky plots of pure In₂S_{3.}

Figure S13. Mott-Schottky plots of pure CuInS_{2.}

Figure S14. Photoluminescence emission spectras of In₂S₃, In₂S₃-CuInS₂-15 and CuInS₂.

Figure S15. The transient photocurrent responses of In₂S₃, In₂S₃-CuInS₂-10, In₂S₃-CuInS₂-15 and CuInS₂.

Figure S16. Electrochemical impedance spectroscopy (EIS) plots of In_2S_3 , In_2S_3 -CuInS₂-10, In_2S_3 -CuInS₂-15 and CuInS₂.

Table S1. Comparison of the CO_2 photoreduction performance of In_2S_3 -CuInS₂-15 catalyst with other catalysts.

Light source	Catalyst	Experimental conductions	Experimental conduction μmol g ⁻¹ h ⁻¹	Reference
300 W Xe lamp	In ₂ S ₃ -CuInS ₂	CoCl ₂ , 2,2-bipyridine, TEOA, MeCN	CO: 19	This work
300 W Xe lamp	NiCo ₂ O ₄	TEOA, MeCN	CO: 7	1
300 W Xe lamp	g-C ₃ N ₄	CoCl ₂ , 2,2-bipyridine, TEOA, MeCN	CO: 6	2
450 W Xe lamp	Cu ₂ S/Pt	TEOA	CO: 3.02 CH ₄ : 1.03	3
500 W Xe lamp	Ni (0.2 mol%) doped ZnS	TEOA, MeCN	CO: 1.67 HCOOH: 0.67	4
500 W Xe lamp	NH ₂ -MIL-125(Ti)	TEOA, MeCN	HCOOH: 16	5
500 W Xe lamp	NH ₂ -Uio-66(Zr)	TEOA, MeCN	НСООН: 26.4	6
300 W Xe lamp	UiO-66/CNNS	TEOA, MeCN	CO: 9.79	7
300 W Xe lamp	Co- porphyrin/carbon nitride	TEOA, MeCN	CO: 17	8

References

[1] Z. Wang, M. Jiang, J. Qin, H. Zhou, Z. Ding, *Phys. Chem. Chem. Phys.*, 2015, 17, 16040-16046.

[2] J. Lin, Z. Pan, X. Wang, ACS Sustainable Chem. Eng., 2014, 2, 353-358.

[3] A. Manzi, T. Simon, C. Sonnleitner, M. Doblinger, R. Wyrwich, O. Stern, J. Stolarczyk, J.

Feldmann, J. Am. Chem. Soc. 2015, 137, 14007-14010.

[4] T. M. Suzuki, T. Takayama, S. Sato, A. Iwase, A. Kudo, T. Morikawa, *Appl. Catal. B: Environ.* 2018, **224**, 572-578.

[5] D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, *Chem. Eur. J.* 2013, **19**, 14279-14285.

[6] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, *Angew. Chem. Int. Ed.*, 2012, 51, 3364-3367.

[7] L. Shi, T. Wang, H. Zhang, K. Chang, J. Ye, Adv. Funct. Mater., 2015, 25, 5360-5367.

[8] G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi, J. Ye, *Appl. Catal. B: Environ.*, 2017, 200, 141-149.