Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supplementary material Hierarchical flower-like Ni-Co layered double hydroxide nanostructures: synthesis and super performance

Tao Dong^a, Xiao Zhang^b, Meng Li^a, Peng Wang^a, Ping Yang^{a*}

a School of Material Science and Engineering, University of Jinan, Jinan 250022, China

b Fuels and Energy Technology Institute and Department of Chemical Engineering, Curtin

University, Perth WA6845, Australia

*Corresponding Author has to be addressed.E-mail address: mse_yangp@ujn.edu.cn (P. Yang)

Fig. S1 (a) SEM image and (b) XRD pattern of Ni(OH)₂.

Fig. S2 (a) SEM image and (b) XRD pattern of Co(OH)₂.

Fig. S3 EDS analysisof (a) Ni-Co LDH 1/2, (b) Ni-Co LDH 1/1 and (c) Ni-Co LDH 2/1.

r Atomic percentage	es of NI, Co, and O el	lements.
Ni	Со	0
11.87	23.95	64.18
14.90	15.68	69.42
24.78	12.41	62.81
	Ni 11.87 14.90 24.78	Ni Co 11.87 23.95 14.90 15.68 24.78 12.41

- -- J

Fig. S4 (a) SEM image and (b) XRD pattern of product prepared with H₂O as the solvent.

Fig. S5 XRD pattern of Ni(OH)₂ prepared with H₂O as the solvent.

Fig. S6 Raman spectra of Ni-Co LDH 1/2, Ni-Co LDH 1/1, Ni-Co LDH 2/1 and ethanol.

Fig. S7 XPS spectra of Ni-Co LDH 1/2, Ni-Co LDH 1/1 and Ni-Co LDH 2/1 for full survey scan.

	Pseudo first-o	Pseudo second-order models					
Sample	$q_{e} (mg g^{-1})$	q _e (mg g ⁻¹)) K ₁	R ²	q _e (mg g ⁻¹)) K ₂	R ²
	experiment	model			model		
Ni-Co LDH 1/2	230.5	243.3	1.04	0.92698	253.8	0.00303	0.99779
Ni-Co LDH 1/1	252.6	291.5	0.25	0.95621	275.5	0.0188	0.99772
Ni-Co LDH 2/1	211.1	231.5	1.81	0.99405	234.8	0.00223	0.99966
Ni(OH) ₂	229.2	241.3	2.13	0.95499	236.4	0.00144	0.99275
Co(OH) ₂	224.6	251.2	1.79	0.98102	243.9	0.00268	0.99926

Table S2. Kinetics models fitted data of AF adsorption with different adsorbents.

Table S3. Kinetics models fitted data of CR adsorption with different adsorbents.

	Pseudo first-order models				Pseudo second-order models		
Sample	q _e (mg g ⁻¹) experiment	q _e (mg g ⁻¹) model	K ₁	R ²	q _e (mg g ⁻¹) model) K ₂	R ²
NE CELDII 1/2	172.4	102.0	2.00	0.07529	104.0	1.2*10-2	0.00701
N1-C0 LDH 1/2	1/3.4	183.8	3.86	0.9/538	184.8	1.3*10-2	0.99/91
Ni-Co LDH 1/1	245.2	259.7	0.59	0.97401	261.1	6.1*10-2	0.99839
Ni-Co LDH 2/1	148.5	184.5	8.24	0.97171	193.4	5.1*10-3	0.99703
Ni(OH) ₂	165.8	159.7	7.18	0.91864	172.4	5.8*10 ⁻³	0.99291
Co(OH) ₂	163.4	174.2	4.33	0.96964	174.8	7.9*10 ⁻³	0.99987

Table S4. Adsorption models fitted data of AF and CR adsorption onto Ni-Co LDH 1/1.

	Langmuir 1	nodels			Freundlic	h models	5
Adsorption	K _L	q _{max}	R _L	R ²	K _F	n	R ²
	(L mg ⁻¹)	(mg g ⁻¹)			$(L mg^{-1})$		
AF	0.037	2787	0.043-0.119	0.99486	812.4	5.01	0.88851
CR	0.0424	1915.7	0.038-0.106	0.99690	937.7	9.69	0.90211

Fig. S8 Effect of dye concentrations on the equilibrium adsorption capacity of AF and CR adsorption onto Ni-Co LDH 1/1.

Fig. S9 (a) Zeta potential of Ni-Co LDH 1/1 at different pH values. (b) Zeta potential of Ni-Co LDH 1/1, Ni-Co LDH 1/2, Ni-Co LDH 2/1, Ni(OH)₂ and Co(OH)₂ at pH values of 7.

Adsorbents	$q_{max} (mg g^{-1})$	References
	2787(AF)	This moult
NI-COLDH 1/1	1915.7 (CR)	THIS WOLK
C/NiFe ₂ O ₄	21(AF)	[1]
NiOnanosheets	22(AF)	[2]
Chitosan	43(AF)	[3]
Graphene oxide/chitosan	130(AF)	[4]
Montmorillonite	161(AF)	[5]
Carbon-alumina composite	95 (AF)	[6]
ZnFe ₂ O ₄ hollow fibers	150(AF)	[7]
LTA-type zeolite	40(AF)	[8]
CLDH/y-AlO(OH)-2-500	447 (CR)	[9]
MgO (111) nanoplates	303 (CR)	[10]
Activated carbon powder	500 (CR)	[11]
CoFe ₂ O ₄	244.5 (CR)	[12]
Activated carbon from coal	189 (CR)	[13]

Table S5 Comparison of maximum adsorption capacitance for acid fuchsin of various adsorbents.

Table S6 Comparisons of the specific capacitances for Ni-Co LDHs based electrode materials in three-electrode system.

Ni-Co LDHs based electrodes	Specific capacitances(F g ⁻¹)	Ref.
	21(0, 2, (1, A, -1))	This
NI-CO LDH 1/2	$3108.3(1 \text{ A g}^{-1})$	work
Ni-Co LDHs on conducting Zn ₂ SnO ₄	1805 (0.5 A g ⁻¹)	[14]
Nickel/cobalt double hydroxides	1887.5 (1 A g ⁻¹)	[15]
Ni-Co LDH nanosheets	2682 (3 A g ⁻¹)	[16]
Vertically aligned Ni-Co LDHs nanosheet	1734 (6 A g ⁻¹)	[17]
Ni-Co LDHs nanoflakes/carbon cloth	1938 (1 A g ⁻¹)	[18]
Carbon nanotubes/Ni-Co hydroxide nanoflake	1151 (1 A g ⁻¹)	[19]
Flower-like nickel-cobalt binary hydroxides	1804 (1 A g ⁻¹)	[20]
Nitrogen-Doped Carbon Nanofiber/Ni-Co LDHs	1950 (1 A g ⁻¹)	[21]

Fig. S10 XRD patterns of Ni-Co LDH 1/1 before and after AF and CR adsorption.

Fig. S11 CV and galvanostatic charge/discharge curves: (a) and (b) Ni(OH)₂ electrode, (c) and (d) Co(OH)₂ electrode, (e) and (f) Ni-Co LDH 1/1electrode and (g) and (h) Ni-Co LDH 2/1 electrode.

Fig. S12 (a) Galvanostatic charge/discharge curves of Ni-Co LDH with molar ratio of Ni/Co is 1:4, inset shows the SEM image. (b) Relationship plot between discharge specific capacitance and molar ratio of Ni/Co at current density of 1 A g⁻¹.

Fig. S13 SEM image of Ni-Co LDH 1/2 electrode after 3000 cycles.

The specific capacitances (SC) were calculated using the integral current areas of galvanostatic discharge curve with following formula ²²:

$$SC = \frac{2I_m \int Vdt}{V_i^2 - V_f^2}$$

 I_m (A g⁻¹) is the current density, where I is the current and m is the mass of active material. $\int V dt$

is the integral current area, where V is the potential with initial and final values of V_i and V_f , respectively. In this work, the area of the working electrode immersed into the electrolyte was controlled to be about 1 cm².

References

- [1] X. Chen, Fine Chem. 30 (2013) 776–781.
- [2] Z. Song, L. Chen, J. Hu, R. Richards, Nanotechnology 20 (2009) 275707.
- [3] H. Jia, X. Wang, B. Han, Chin. J. Environ. Eng. 5 (2011) 1800–1805.
- [4] A. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, Carbohydr. Polym. 102(2014) 755–761.
- [5] A. S. Elsherbiny, Appl. Clay Sci. 83–84 (83) (2013) 56–60.

- [6] M. Dutta, J.K. Basu, Int. J. Environ. Sci. Technol. 11 (2014) 87–96.
- [7] J. Li, D.H.L. Ng, P. Song, Y. Song, C. Kong, J. Ind. Eng. Chem. 23 (2015) 290–298.
- [8] H. Y. Xu, L. C. Wu, T. N. Shi, W. C. Liu, S. Y. Qi, Sci. China Technol. Sci. 57 (2014) 1127– 1134.
- [9] J. Lia, N. Zhang, D. H. L. Ng, J. Mater. Chem. A 3 (2015) 21106–21115.
- [10] J. Hu, Z. Song, L. Chen, H. Yang, J. Li, R. Richards, J. Chem. Eng. Data 55 (2010) 3742– 3748.
- [11] M. Szlachta, P. Wójtowicz, Water Sci. Technol. 68 (2013) 2240-2248.
- [12] L. Wang, J. Li, Y. Wang, L. Zhao, Q. Jiang, Chem. Eng. J. 181 (2012) 72-79.
- [13] E. L. Grabowska, G. Gryglewicz, Dyes Pigments 74 (2007) 34-40.
- [14] W. Xu, A. Sumboja, M. F. Lin, J. Yan, P. S. Lee, Nanoscale 4 (2012) 7266–7272.
- [15] T. Yan, H. Y. Zhu, R. Y. Li, Z. J. Li, J. K. Liu, G. L. Wang, Z. Q. Gu, Electrochim. Acta 111 (2013) 71–79.
- [16] H. Chen, L. F. Hu, M. Chen, Y. Yan, L. M. Wu, Adv. Funct. Mater. 24 (2014) 934.
- [17] J. Pu, Y. Tong, S. B. Wang, E. H. Sheng, Z. H. Wang, J. Power Sources 250 (2014) 250–256.
- [18] M. F. Warsi, I. Shakir, M. Shahid, M. Sarfraz, M. Nadeem, Z. A. Gilani, Electrochim. Acta 135 (2014) 513–518.
- [19] M. Li, K. Y. Ma, J. P. Cheng, D. H. Lv, X. B. Zhang, J. Power Sources 286 (2015) 438-444.
- [20] J. Zhang, J. P. Cheng, M. Li, L. Liu, F. Liu, X. B. Zhang, J. Electroanal. Chem.743 (2015) 38–45.
- [21] F.L. Lai, Y.E. Miao, L.Z.Zuo, H.Y. Lu, Y.P. Huang, T.X. Liu, small 12 (2016) 3235-3244.
- [22] L. Q. Mai, A. M. Khan, X. C. Tian, K. M. Hercule, Y. L. Zhao, X. Lin, X. Xu, Nat. Commun. 4 (2013) 2923 doi: 10.1038/ncomms3923.