Two NbO-Type MOF Isomers Based on Linear and Zigzag Diisophthalate Ligands: Exploring the Effect of Ligand-Originated MOF Isomerization on Gas Adsorption Properties

Yao Wang, Minghui He, Xiaoxia Gao, Yingying Zhang, Haoyan Zhong, Piao Long, Xia Wang and Yabing He*

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

Fig. S1 The electronic photographs of the as-synthesized (a) ZJNU-91 and (b) ZJNU-92.

Fig. S2 Comparison of the simulated (black) and experimental (red) PXRD patterns of (a) **ZJNU-91** and (b) **ZJNU-92**.

Fig. S3 TGA curves of (a) ZJNU-91 and (b) ZJNU-92 under nitrogen atmosphere.

Fig. S4 Comparison of FTIR spectra of ZJNU-91 and ZJNU-92 and their corresponding ligands.

 $S_{\text{BET}} = \frac{1}{(7.86065 \times 10^{-7} + 0.00181)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2404 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00159)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2738 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00181/7.86065 \times 10^{-7} = 2304$

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.02041$$

Fig. S5 The consistency (a), BET (b), and Langmuir (c) plots for ZJNU-91.

 $S_{\text{BET}} = \frac{1}{(3.20942 \times 10^{-7} + 0.00153)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2845 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00141)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 3087 \text{ m}^2 \text{ g}^{-1}$ BET constant $C = 1 + 0.00153/3.20942 \times 10^{-7} = 4768$

$$(p / p_o)_{n_m} = \frac{1}{\sqrt{C} + 1} = 0.014275$$

Fig. S6 The consistency (a), BET (b), and Langmuir (c) plots for ZJNU-92.

Fig. S7 Comparison of the isosteric heat of C_2H_2 , CO_2 and CH_4 adsorption in ZJNU-91 and ZJNU-92.

Fig. S8 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-91** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S9 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-92** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S10 IAST selectivities for the equimolar (a) C_2H_2 -CH₄, (b) CO₂-CH₄ and (c) C_2H_2 -CO₂ gas mixtures in **ZJNU-91** at three different temperatures of 278 K, 288 K, and 298 K.

Fig. S11 IAST selectivities for the equimolar (a) C_2H_2 -CH₄, (b) CO₂-CH₄ and (c) C_2H_2 -CO₂ gas mixtures in **ZJNU-92** at three different temperatures of 278 K, 288 K, and 298 K.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm

Fig. S12 NMR spectra

(1) Q_{st} calculations

The isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at three different temperatures of 278 K, 288 K and 298 K. The Q_{st} was defined as

$$Q_{st} = -R \left(\frac{\partial Inp}{\partial (1/T)} \right)_{q}$$

where p is the pressure, T is the temperature, R is the gas constant, and q is the adsorption amount. These calculations were done through the "Heat of Adsorption" function embedded in the software supplied by Micromeritics ASAP 2020HD88 surface-area-and-pore-size analyzer machine.

(2) IAST calculations

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2 can be formally defined as

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$

where q_1 and q_2 are the component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz (*Ref.* Myers, A. L.; Prausnitz, J. M., Thermodynamics of Mixed-Gas Adsorption. *A.I.Ch.E.J.* **1965**, *11*, 121-127.).

MOFs	ZJNU-91	ZJNU-92				
Empirical formula	$C_{66}H_{42}Cu_6O_{30}S_6$	$C_{22}H_{12}Cu_2O_{10}S_2$				
Formula weight	1888.72	627.52				
λ (Å)	0.71073	1.54184				
Crystal system	Monoclinic	Trigonal				
Space group	<i>C2/c</i>	<i>R-3m</i>				
	<i>a</i> = 32.1419(9) Å	a = 18.4854(3) Å				
	<i>b</i> = 18.5746(2) Å	b = 18.4854(3) Å				
Unit cell dimensions	c = 28.3151(6) Å	c = 44.3369(10) Å				
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$				
	$\beta = 112.511(3)^{\circ}$	$\beta = 90^{\circ}$				
	$\gamma = 90^{\circ}$	$\gamma = 120^{\circ}$				
$V(\text{\AA}^3)$	15616.7(6)	13120.6(4)				
Ζ	4	9				
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	0.803	0.715				
$\mu (\mathrm{mm}^{-1})$	0.923	1.777				
<i>F</i> (000)	3792	2826				
Crystal size (mm)	$0.14 \times 0.14 \times 0.10$	0.19 ×0.12 ×0.10				
θ range for data collection (°)	1.63 to 26.37	2.99 to 74.16				
	$-40 \le h \le 40$	$-11 \le h \le 23$				
Limiting indices	$-23 \le k \le 21$	$-23 \le k \le 13$				
	$-35 \le l \le 26$	$-50 \le l \le 54$				
Reflections collected / unique	90048 / 15697	12519 / 3189				
R _{int}	0.0950	0.0242				
Max. and min. transmission	0.9134 and 0.8817	0.8423 and 0.7289				
Pafinament method	Full-matrix	Full-matrix				
Kermement method	least-squares on F^2	least-squares on F^2				
Data/restraints/parameters	15697 / 0 / 454	3189 / 16 / 92				
Goodness-of-fit on F^2	1.060	1.393				
Final R indices $[I > 2\sigma(L)]$	$R_1 = 0.1017$	$R_1 = 0.0698$				
That K models $[1 > 20(1)]$	$wR_2 = 0.2934$	$wR_2 = 0.2844$				
R indices (all data)	$R_1 = 0.1113$	$R_1 = 0.0737$				
A morees (an data)	$wR_2 = 0.3042$	$wR_2 = 0.2959$				
Largest diff. peak and hole $(e^{-}Å^{-3})$	1.351 and -1.072	1.641 and -0.963				
CCDC	1865521	1865522				

Table S1 Crystal data and structure refinement for ZJNU-91, and ZJNU-92.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-91**.

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	$\frac{E}{(\text{kJ mol}^{-1})}$	v	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	E (kJ mol ⁻¹)	v
C_2H_2	15.95785	9.45447×10 ⁻⁸	27.123	1	2.09813	9.4109×10 ⁻⁷	30.869	1
CO ₂	26.42044	3.10059×10 ⁻⁷	21.447	1				
CH ₄	14.83517	9.84928×10 ⁻⁷	16.168	1				

Table S3 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-92**.

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	$q_{ m sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-v}	E (kJ mol ⁻¹)	v
C_2H_2	30.61154	2.00031×10 ⁻⁷	22.385	1	2.52956	8.14405×10 ⁻⁸	35.455	1
CO ₂	19.43744	3.48269×10 ⁻⁷	21.543	1				
CH ₄	11.34026	1.80991×10 ⁻⁶	14.997	1				

MOFs	S_{BET} (S_{Langmuir}) $(m^2 g^{-1})$	$V_{\rm p}$ (cm ³ g ⁻¹)	$D_{\rm c}$ (g cm ⁻³)	$\begin{array}{c} C_2H_2 \text{ uptake at } 1.05 \text{ atm} \\ [\text{cm}^3 (\text{STP}) \text{ g}^{-1}] \end{array}$		$CO_2 \text{ uptake at } 1.05 \text{ atm}$ $[cm^3 (STP) g^{-1}]$			$S_{\mathrm{C_2H_2/CH_4}}$ "			$S_{{ m CO}_2/{ m CH}_4}$ a			
				278 K	288 K	298 K	278 K	288 K	298 K	278 K	288 K	298 K	278 K	288 K	298 K
ZJNU-91	2404 (2738)	0.9824	0.7547	245.4	208.6	172.5	155.8	122.0	94.8	30.5	27.3	24.9	5.92	5.40	4.93
ZJNU-92	2845 (3087)	1.1026	0.6737	230.8	190.6	155.1	128.8	101.2	79.2	31.7	27.6	24.4	6.09	5.39	4.85

Table S4 Summary of the pore textural properties and adsorption data of the two MOFs investigated in this work

 $S_{\text{BET}}/S_{\text{Langgmuir}}$: BET/Langmuir specific surface area; V_{p} : experimental pore volume determined by 77 K N₂ adsorption; D_{c} : framework density without guest molecules and terminal water molecules; ^{*a*} at 110 kPa.