Supporting Information

Synthesis of CuO-CdS composite nanowires and its ultrasensitive

ethanol sensing property

Nan Zhang^{a,1}, Xiaohui Ma^{a,1}, Yanyang Yin^a, Yu Chen^{a, b}, Chuannan Li^a, Jingzhi Yin^a,* Shengping Ruan^a,*

^a State Key Laboratory on Integrated Optoelectronics and College of Electronic

Science and Engineering, Jilin University, Changchun 130012, P. R. China.

^b Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, PR

China.

E-mail: Ruansp@jlu.edu.cn (S. Ruan)

Figure S1. EDS elemental spectrum of the 0.05 at% CuO-CdS nanowires.

Figure S2. the XPS spectra of the CdS: (a) Cd element, (b) S element

Figure S3. the XPS spectra of the 0.01 at% CuO-CdS: (a) Cd element, (b) S element, (c) Cu element and (d) O element.

Figure S4. the XPS spectra of the 0.05 at% CuO-CdS: (a) Cd element, (b) S element, (c) Cu element and (d) O element.

Figure S5. the XPS spectra of the 0.1 at% CuO-CdS: (a) Cd element, (b) S element, (c) Cu element and (d) O element.

Figure S6. the XPS spectra of the 0.5 at% CuO-CdS: (a) Cd element, (b) S element, (c) Cu element and (d) O element.

Table S1	atom ratio	of Cu to Co	l of the a	as-prepared	samples	according to	XPS
						0	

Samples	Pure CdS	0.01 at% CuO-CdS	0.05 at% CuO-CdS	0.1 at% CuO-CdS	0.5 at% CuO-CdS
Atom ratio Cu/Cd	0	0.2 %	0.75 %	0.84 %	1.38 %

Figure S6. Response of 0.05% CuO/CdS composite based sensor to 100 ppm ethanol,

isopropanol and methanol at different operating temperature.

Figure S7. The change in sensor resistance in air around 185°C with the additive

amounts of CuO.