Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Title : Fabrication of Au loaded CaFe₂O₄ / CoAl LDH p-n junction based achitecture with stoichoimetric H_2 & O₂ generation and Cr(VI) reduction under visible light

Snehaprava Das, Sulagna patnaik and K. M. Parida*

Center for Nano Science and Nano Technology SOA Deemed to be University, Bhubaneswar-751030,Odisha(India)

Fig. S1 Band gap energy values estimated from UV-vis DRS of (a) neat Co Al LDH, (b) CFO, (c) 50% LDH-CFO and (d) 50% LDH-CFO@Au.

Fig. S2 Electrochemical impedance spectra (EIS) (a) and polarisation curve (b) of all synthesized samples under visible light irradiation.

Fig. S3 H_2 production study of LDH-CFO@Au heterostructure using various scavenger component.

Fig.S4 Rate of H₂ production (a), O2 production (b) and Cr reduction (c) of neat LDH, CFO and Au loaded LDH, CFO.

Fig. S5 Cycling test for H₂ (a) and O₂ (b) evolution of LDH-CFO@ Au.

Fig. S6 XRD plot of 50%LDH-CFO before and after photocatalytic reaction.

Fig. S7 Reusability study of Cr(VI) reduction over 50% LDH-CFO @Au

Table	S1 .	Values	of H ₂	Evolution	by	Different	LDH-	modified	Nano	composites
					•					1

Catalytic system	UV-vis light Source	Preparation Method	Incident light	Sacrificial agents	H2 evolution $(\mu \text{ mol } g^{-1}h^{-1})$	Ref.
FeMgAl LDH	125 W mercury	coprecipitation	λ>420	СНЗОН	493	4
CdSe/ZnCr LDH	450 W Xenon	Expoliation	λ>420	Na ₂ So ₃ +Na ₂ S	374	5
CdZnS/ZnCr LDH	300 W Xenon	hydrothermal	λ>420	CH ₃ OH	18320	6
NiZnCr LDH	125 W mercury	coprecipitation	λ>420	CH ₃ OH	1915	7
CeO2-MgAl LDH	125 W mercury	In situ	λ>420	CH ₃ OH	16483	8
50% CoAl LDH-CaFe2O4	150 W Xenon	Co- Precipitation followed by sol gel	λ> 420	CH ₃ OH	17120	Present work

50% CoAl	150 W	Co-	λ>420	CH ₃ OH	18955	Present
LDH-	Xenon	Precipitation				work
CaFe2O4@Au		followed by				
		sol gel				
		J. J				

Table S2. Values of O₂ Evolution by Different LDH-modified Nano composites

Catalytic system	UV-vis light	Preparation	Incident	Sacrificial	02	Ref.
	Source	Method	light	agents	evolution (μ mol g ⁻ ¹ h ⁻¹)	
TbZnCr-LDH	200 W Xenon	Hydroyhermal followed by co- precipitation	λ> 420	AgNO₃	1022	9
ZnCrLDH/layered TiO ₂	150 W Xenon	Layer by layer	λ> 420	AgNO ₃	1180	10
ZnCr LDH/RGO	450 W Xenon	Self-assembly		AgNO₃	1200	11
ZnCr LDH/POM	405 W Xenon	self-assembly	λ> 420	AgNO₃	2400	12
TiO₂@CoAl LDH	300W Xenon	In situ growth	λ> 420	AgNO₃	2240	13
50% CoAl LDH- CaFe ₂ O ₄	150 W Xenon	Co- Precipitation followed by sol gel	λ> 420	AgNO₃	14126	Present search
50% CoAl LDH- CaFe₂O₄@Au	150 W Xenon	Co- Precipitation followed by sol gel and reduction	λ> 420	AgNO₃	10275	Present search

Catalytic system	Concentration of Cr(VI)	Light source	Preparation method	Catalytic activity time(h)	рН	Results (%)	refs
FeOOH/RGO	10 ppm	Visible light	in situ hydrothermal	3	2	94	1
MnO2@RGO	10 ppm	Visible light	in situ hydrothermal	2	2	97	2
Ag@Ag3PO4/g- C3N4/NiFe LDH	20ppm	Visible light	Electrostatic self-assembly and insitu photoreduction	2	5	97	3
50% CoAl LDH- CaFe2O4@Au	20ppm	Visible light	Co-Precipitation followed by sol gel and reduction	1	4	99.03	Present work

Table S3. Rate of Cr(VI) reduction over 50% LDH-CFO@ Au heterostructure with other reported materials

Table S4 Regression co-efficient (R^2) and rate constant (k) values of the synthesized samples in Cr(VI) reduction

Sample	Regression Co-efficient (R ²)	Rate constant (k)		
In the dark		0		
Co Al LDH	0.95	0.014		
CaFe2O4	0.91	0.007		
40% LDH-CFO	0.93	0.021		
50% LDH-CFO	0.97	0.031		
60% LDH-CFO	0.95	0.027		
50% LDH-CFO@Au	0.98	0.048		

References

- 1. K. Parida, M. Satpathy, L. Mohapatra. J. Mater. Chem. 2012, 22, 7350-7.
- **2.** G. Zhang, B. Lin, W. Yang, S. Jiang, Q. Yao, Y. Chen, & B. Gao, RSC Adv., 2015, *5*, 5823-5829.
- **3.** L. Yao, D. Wei, D. Yan, C. Hu, Chem.–Asian J., 2015, 10,630-6.
- 4. N. Baliarsingh, L. Mohapatra, K. Parida, J. Mater. Chem. A., 2013, 1, 4236-43.
- 5. S. Nayak, K.M. Parida, Int. J. Hydrogen Energy, 2016, 41, 21166-80.
- Y. Fu, F. Ning, S. Xu, H. An, M. Shao, M. Wei, J. Mater. Chem. A. 2016, 4, 3907-13.
- **7.** Y. Dou, S. Zhang, T. Pan, S. Xu, A. Zhou, M. Pu, H. Yan, J. Han, M. Wei, D.G. Evans, X. Duan. Adv. Funct. Mater. 2015, 25, 2243-9.
- **8.** J.L. Gunjakar, I.Y. Kim, J.M. Lee, Y.K. Jo, S.J. Hwang, J. Phys. Chem. C, 2014, 118, 3847-63.
- 9. S. Nayak, L Mohapatra, K. Parida. J. Mater. Chem. A, 2015, 3, 18622-35.
- 10. J.L. Gunjakar, I.Y. Kim, J.M. Lee, N.S. Lee, S.J. Hwang, 2013, 6, 1008-17.
- 11. D. K.Padhi & K. Parida , J. Mater. Chem. A, 2014, 2, 10300-10312.
- **12.** D.K. Padhi, A. Baral, K. Parida, S.K. Singh, and M.K. Ghosh, J. Phys. Chem. C, 2017, 121, 6039-6049.
- 13. S. Nayak, K.M. Parida, ACS Omega., 2018, 3, 7324-43