Supporting information

A Novel MnO₂/MXene Composite Prepared by Electrostatic Selfassembly and Its Electrode for Enhanced Supercapacitive Performance

Shu Chen^a, Yuanfang Xiang^a, Weijian Xu^{*a}, Chang Peng^{*a,b}

^aCollege of Chemistry and Chemical Engineering, Hunan University, Hunan 410082,

P.R. China

^bCollege of Science, Hunan Agricultural University, Hunan 410128, P.R. China

*Corresponding authors: weijianxu_59@sina.com (W. Xu), pch1026@126.com (C.

Peng)

Figure (S1) ¹H NMR of Gem (D₂O). ¹H NMR (D₂O): δ 0.60–0.80 (6H, CC*H*₃), δ 1.00-1.35 (12H, CC*H*₂C*H*₂C*H*₂C), δ 1.55-1.75 (4H, NCC*H*₂), δ 2.95.00-3.15 (12H, NC*H*₃), δ 3.2.00-3.4 (4H, NC*H*₂C), and δ 3.70-3.85 (4H, NC*H*₂CN).

Figure (S2) Zeta potentials of (a) H-MnO₂ and (b) MnO₂ nanosheets; (c) SEM and (d) TEM images of MnO₂ nanosheets

Figure (S3) (a) Zeta potential of MXene; (b) SEM and (c) TEM images of MXene

 Table S1 Binding energies and atomic ratios for various elements in MnO₂/MXene by

 XPS

Sample	C1s		N1s		Ti2p		Mn2p		Ols		F1s	
	BE (eV)	Atom %a	BE (eV)	Atom %ª	BE (eV)	Atom %ª	BE (eV)	Atom %ª	BE (eV)	Atom %ª	BE (eV)	Atom %ª
MnO ₂ /MXene	284.8	25.09	402.2	3.61	458.2	9.62	641.9	10.45	529.5	47.55	683.9	3.68

^{*a*} The atomic percent (atom %) of each element was determined using XPS high-resolution data and normalization by the following sensitivity factors (RSF).

Figure (S4) The high-resolution XPS of C1s for MXene

Figure (S5) (a) GCD curves and (b) specific capacitances of the MnO_2/MX ene composites with different wt ratio between MnO_2 nanosheets and MXene nanosheets at a current density of $1 \text{ A} \cdot \text{g}^{-1}$

Electrodes	GCE), current	density (A	\ ∙g ⁻¹)	CV, scan rate (mV·s ⁻¹)				
Electiodes	1	2	4	6	25	50	75	100	
MnO ₂ /MXene	340	335	328	320	347	342	336	332	
MXene	109	106	101	95	117	113	107	100	
MnO ₂ nanosheets	137	135	132	128	145	141	138	135	

Table S2 Specific capacitance $(F {\cdot} g^{-1})$ of electrodes as measured with different

measurement techiques

Figure (S6) XRD of MnO₂/MXene before and after 2000 GCD cycles