## **Supplementary material**

## A self-calibrating bimetallic lanthanide metal-organic luminescent sensor integrated with logic gate operation for detecting N-methylformamide

Si-Jia Qin, Xianglong Qu and Bing Yan\*

China-Australia Joint Laboratory of Functional Molecules and Ordered Matters, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

\* Corresponding author Email addresses: byan@tongji.edu.cn (Bing Yan)



**Figure S1**. The FT-IR images of  $Eu_xTb_{2-x}(FDA)_3$ . The peaks around 3000 cm<sup>-1</sup> were attributed to the O-H vibration. The peaks around 1680 cm<sup>-1</sup> were C=O stretch, which were extremely weak owing to the coordinating with lanthanide ions.



Figure S2. SEM images of Eu<sub>0.1</sub>Tb<sub>1.9</sub> (FDA)<sub>3</sub>.



Figure S3. TEM images of Eu<sub>0.1</sub>Tb<sub>1.9</sub>(FDA)<sub>3</sub>.



Figure S4. Thermal gravimetric analysis curves for Eu-MOF, Tb-MOF, and  $Eu_{0.1}Tb_{1.9}$ -MOF





**Figure S5.** The spectra of (a)  $Tb_2(FDA)_3$ , (b)  $Eu_2(FDA)_3$ , (c)  $Eu_{0.02}Tb_{1.98}(FDA)_3$ , and (d)  $Eu_{0.2}Tb_{1.8}(FDA)_3$  in solid-state, inset shows the powder under UV-light irradiation.





**Figure S6.** The suspension-state luminescent spectra of (a)  $Eu_2(FDA)_3$ , (b)  $Tb_2(FDA)_3$ , (c)  $Eu_{0.02}Tb_{1.98}(FDA)_3$ , and (d)  $Eu_{0.2}Tb_{1.8}(FDA)_3$  within different volume content of NMF in DMF from 0 to 1, excited at 300 nm at RT.



**Figure S7.** The CIE chromaticity diagram shows the change at different volume ratios of NMF.



**Figure S8.** The (a) suspension-state luminescent spectra and (b) the corresponding curve ( $I_{544nm}/I_{614nm}=3.836-53.63X+175.25X^2$ , R<sup>2</sup>=0.9845) of the probe in different volume content of NMF in DMA from 0 to 1.



**Figure S9.** The (a) suspension-state luminescent spectra and (b) the linear model  $(Log(I_{544nm}/I_{614nm})=-0.993+3.26X, R^2=0.969)$  of the sensor in different volume content of NMF in ethyl acetate from 0 to 1, excited at 300 nm at RT.



**Figure S10.** The (a) suspension-state luminescent spectra and (b) the normalization curve  $(\text{Log}(I_{544\text{nm}}/I_{614\text{nm}})=-1.77+1.63X+0.83X^2, \text{ R}^2=0.952)$  of the sensor in N-Acetyl-N-Methylamine (NMA) different volume content of NMF in from 0 to 1, excited at 300 nm at RT.



**Figure S11.** The integrated intensity ratio of the  $Eu_{0.1}Tb_{1.9}(FDA)_3$  changed with the contact time of NMF.



Figure S12. Integrated intensity ratio  $I_{544nm}/I_{612nm}$  of  $Eu_{0.1}Tb_{1.9}(FDA)_3$  in the solvents for five runs.



Figure S13. The XRD patterns of  $Eu_{0.1}Tb_{1.9}(FDA)_3$  after five runs.



Figure S14. The IR patterns of the sensing probe after cycling.



Figure S15. UV-vis spectra of (a) DMF and NMF; (b) ligand, and MOF.

| Table S1. | The ICP | analysis | result of | of mixed | Eu <sub>x</sub> Tb <sub>1-</sub> | x-MOF |
|-----------|---------|----------|-----------|----------|----------------------------------|-------|
|-----------|---------|----------|-----------|----------|----------------------------------|-------|

| LMOF                                                                                | Eu(mg/L) | Tb(mg/L) | Ratio  | <b>Ratio in theory</b> |
|-------------------------------------------------------------------------------------|----------|----------|--------|------------------------|
| [Eu <sub>0.02</sub> Tb <sub>1.98</sub> (FDA) <sub>3</sub> (DMF) <sub>2</sub> ]·2DMF | 0.736    | 49.65    | 0.0148 | 0.0101                 |
| [Eu <sub>0.1</sub> Tb <sub>1.9</sub> (FDA) <sub>3</sub> (DMF) <sub>2</sub> ]·2DMF   | 3.815    | 91.10    | 0.0418 | 0.0526                 |
| [Eu <sub>0.2</sub> Tb <sub>1.8</sub> (FDA) <sub>3</sub> (DMF) <sub>2</sub> ]·2DMF   | 5.394    | 56.84    | 0.0949 | 0.111                  |

| Sensor system                                             | Linear range     | Advantage                                                   | Disadvantage                                            | Ref       |
|-----------------------------------------------------------|------------------|-------------------------------------------------------------|---------------------------------------------------------|-----------|
| Liquid<br>chromatography-mass<br>spectrometry (LC-<br>MS) | 0.004-8<br>μg/mL | Accurate, and reliable.                                     | Complicated process.                                    | 1         |
| Gas chromatography-<br>mass spectrometry<br>(GC-MS)       | 0.3-30<br>μg/mL  | Non-invasive,<br>and reliable.                              | Requiring<br>highly skilled<br>personnel to<br>operate. | 2         |
| Eu@MOF-1                                                  | 0-100 μΜ         | Fast response,<br>and high<br>selectivity.                  | Monometallic<br>MOF, non-<br>self reference.            | 3         |
| [Eu <sub>0.1</sub> Tb <sub>1.9</sub> (FDA) <sub>3</sub> ] | 0-100%           | Self-calibrating,<br>visibility and<br>good<br>reusability. | Preliminary<br>test.                                    | This work |

Table S2. Performances of different sensor systems for detection of NMF.

**Table S3.** Luminescence lifetimes of sensor  $Eu_{0.1}Tb_{1.9}$  (FDA)<sub>3</sub> with excitation at 300 nm in different volume ratio of NMF.

| The ratio of NMF | <sup>5</sup> D <sub>4</sub> of Tb <sup>3+</sup> /μs | <sup>5</sup> D <sub>0</sub> of Eu <sup>3+</sup> /µs | η    |
|------------------|-----------------------------------------------------|-----------------------------------------------------|------|
| 0                | 69                                                  | 1528                                                | 0.96 |
| 0.1              | 100                                                 | 1512                                                | 0.94 |
| 0.2              | 218                                                 | 1511                                                | 0.87 |
| 0.3              | 331                                                 | 1457                                                | 0.80 |
| 0.4              | 549                                                 | 1487                                                | 0.66 |
| 0.5              | 1375                                                | 1706                                                | 0.15 |
| 0.6              | 1377                                                | 1476                                                | 0.15 |
| 0.7              | 1446                                                | 1449                                                | 0.11 |
| 0.8              | 1436                                                | -                                                   | 0.10 |
| 0.9              | 2436                                                | -                                                   | -    |
| 1                | 1425                                                | -                                                   | 0.1  |

- J. H. Sohn, M. J. Han, M. Y. Lee, S. K. Kang and J. S. Yang, *J. Pharm. Biomed. Anal.*, 2005, 37, 165-170.
- V.-S. Wang and M.-Y. Lu, J. Chromatogr. B:Anal. Technol. Biomed. Life Sci., 2009, 877, 24-32.
- 3. N. Sun and B. Yan, Sens. Actuators, B, 2018, 261, 153-160.