Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

supporting information

A high-capacity and long-life aqueous rechargeable zinc battery using porous metal-organic coordination polymers nanosheets cathode

Shan Wu^a, Yi-Fan Wang^a, Wei-Liang Liu^{*, a}, Man-Man Ren^a, Fan-Gong Kong^{*, b}, Shou-Juan Wang^b, Xin-Qiang Wang^c, Hui Zhao^{a, d}, Jin-Ming Bao^a Table. S1 Existing materials for neutral ARZB

Cathode	Electrolyte	Rate performance	Cycling performance	Ret
$Zn_3V_2O_7(OH)_2 \cdot 2H_2O$	1 M ZnSO ₄	213 mAh g ⁻¹ at 50 mA g ⁻¹ 76 mAh g ⁻¹ at 3000 mA g ⁻¹	68% (300, 200mA g ⁻¹)	1
VS_2	ZnSO ₄	159.1 mAh g ⁻¹ at 0.1 A g ⁻¹ 136.8 mAh g ⁻¹ at 0.5 A g ⁻¹	98% (200, 0.5Ag ⁻¹)	2
α -MnO ₂	1 M ZnSO ₄ + 0.1 M MnSO ₄	285 mAh g ⁻¹ at C /3 161 mAh g ⁻¹ at 5 C	92% (5000, 5C)	3
$Zn_{0.25}V_2O_5.nH_2O$	1 M ZnSO ₄	282 mAh g ⁻¹ at 0.3 A g ⁻¹ 223 mAh g ⁻¹ at 4.5 A g ⁻¹	80% (1000, 2.4 A g ⁻¹)	4
ZnHCF	1 M ZnSO ₄	81 mAh g ⁻¹ at 0.06 A g ⁻¹ 32.3 mAh g ⁻¹ at 1.2 A g ⁻¹	81% (100, 0.06A g ⁻¹)	5
$Zn_{1/3}Ni_{1/3}Mn_{2/3}O_2$	1 M ZnSO ₄	113.7 mAh g ⁻¹ at 0.05 C 19.4 mAh g ⁻¹ at 0.2 C	92.3% (30, 0.05C)	6
$V_{0.95}Al_{0.05}O_{1.52}(OH)_{0.77}$	1 M ZnSO ₄	156 mAh g ⁻¹ at 0.015 A g ⁻¹	81% (50, 0.015A g ⁻¹)	7

Figure S1.Transmission electron microscope of MOCP-H.

Figure S2. TEM–EDX (a) and thermogravimetric (TG) analyses (b) of MOCP-H after activation.

TEM-EDX confirms the elemental weight of Mn is 27.85 % (Fig. S2a). TG analysis reveals 6.01 % weight loss in the temperature range 600 to 1000 °C, which was due to the transition from Mn_2O_3 to Mn_3O_4 with the reduce of O elemental (Fig. S2b) ^{8, 9}. The weight of MnO_2 is about 36.06 %, so the weight of Mn elemental (27.81 %) deduced from the TG analysis is consistent with TEM-EDX result.

Figure S3. The discharge/charge profiles of the MOCP-H with $MnSO_4$, MOCP-H without $MnSO_4$ and MnO_2 at a current density of 60 mA g⁻¹ in the potential range of 1.0-1.9 V (vs. Zn/Zn^{2+}).

The MOCP-H electrode in $ZnSO_4/MnSO_4$ solution electrolyte exhibits a higher discharge capacity (294 mAh g⁻¹) than that of the MOCP-H electrode in $ZnSO_4$ solution electrolyte (57.5 mAh g⁻¹), which could be attributed to the formation of MnO_2 . The discharge capacity of MnO_2 is 201.5 mAh g⁻¹.

Figure S4. Cyclic voltammetric curves of MOCP-H in $ZnSO_4$ at a scan rate of 0.1 mV s⁻¹ in a potential range of 1.0-1.9 V (vs. Zn/Zn^{2+}). On the continuous cycles, reveals one oxidation peak at 1.69 V and one reduction peaks at 1.41V.

Figure S5. MOCP-H in ZnSO₄ at 60 mAh g^{-1} in a potential range of 1.0-1.9 V. The cells were activated in the first 50 cycles.

Figure S6. XRD curve of charge.

The XRD peaks of the MOCP-H were weak in Fig. 5 when charging to 1.9 V, which can ascribed to the influence of MnO₂. But, some characteristic peaks of the MOCP-H were still existing when charging to 1.9 V.

Figure S7. XRD curve of discharge.

XRD peaks of the MOCP-H when discharging to 1.0 V, the individual XRD curve of discharge shows only two types of peaks which from $ZnMn_3O_7$ •3H₂O and MOCP-H. The MOCP solid can be totally hydrolyzed back to metal salt and organic acid in discharge, and terephthalic acid becomes the only solid product detected by XRD ⁸. The XRD peak of H₂BDC was not found in charge, and the MOCP-H solid can't be hydrolyzed back to metal salt and organic acid.

References

- 1. C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao and H. N. Alshareef, *Advanced materials*, 2018, **30**.
- 2. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, *Advanced Energy Materials*, 2017, **7**, 1601920.
- 3. H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller and J. Liu, *Nature Energy*, 2016, 1, 16039.
- 4. D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah and L. F. Nazar, *Nature Energy*, 2016, 1, 16119.
- 5. L. Zhang, L. Chen, X. Zhou and Z. Liu, *Advanced Energy Materials*, 2015, **5**, 1400930.
- 6. Y. Zhang, K. Cheng, K. Ye, Y. Gao, W. Zhao, G. Wang and D. Cao, *Electrochimica Acta*, 2015, **182**, 971-978.
- 7. J. H. Jo, Y.-K. Sun and S.-T. Myung, *Journal of Materials Chemistry A*, 2017, **5**, 8367-8375.
- 8. Z.-Y. Yuan, Z. Zhang, G. Du, T.-Z. Ren and B.-L. Su, Chemical Physics Letters, 2003, 378, 349-353.
- 9. A. M. Joseph and R. T. Kumar, Materials Research Express, 2018, 5, 014002.
- 10. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao and Y. Yan, *Microporous and Mesoporous Materials*, 2003, **58**, 105-114.