## Supporting information for

## Scalable synthesis of one-dimensional Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> nanofibers as ultrahigh rate capability anodes for lithium-ion batteries

Chao Wang,<sup>a</sup> Xing Xin,<sup>\*a,c</sup> Miao Shu,<sup>b</sup> Shuiping Huang,<sup>\*a</sup> Yang Zhang,<sup>d</sup> Xing Li<sup>\*a,b</sup>

<sup>a</sup> Faculty of Science, College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

- <sup>b</sup> Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
- <sup>c</sup> National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

<sup>d</sup> Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

Corresponding author email: lixing@nbu.edu.cn



Fig. S1. SEM images of precursor nanofibers.



Fig. S2. High-resolution XPS spectra of Na (a), Li (b), Ti (c) and O element (d).



Fig. S3 The BET isothermal curves of the Na<sub>2</sub>Li<sub>2</sub>Ti<sub>6</sub>O<sub>14</sub> nanofibers and nanoparticles.



Fig. S4 (a) Rate performance of  $Na_2Li_2Ti_6O_{14}$  nanoparticles. (b) Cycling performances at current densities of 1 C.



Fig. S5 the SEM images of the  $Na_2Li_2Ti_6O_{14}$  nanoparticle electrodes before (a) and after (b) cycling.

Table S1 The surface area of  $Na_2Li_2Ti_6O_{14}$  nanofibers and nanoparticles

| sample                                                                        | Surface area                   |  |
|-------------------------------------------------------------------------------|--------------------------------|--|
| $Na_2Li_2Ti_6O_{14}$ nanofibers                                               | 5.0084±0.0840m <sup>2</sup> /g |  |
| Na <sub>2</sub> Li <sub>2</sub> Ti <sub>6</sub> O <sub>14</sub> nanoparticles | 2.8776±0.0600m <sup>2</sup> /g |  |

| Fable S2 Cycling stability comparison of rechargeable Na2Li2Ti6O14 reported in rece | nt |
|-------------------------------------------------------------------------------------|----|
| iteratures.                                                                         |    |

| Preparation<br>method                                                   | Loading<br>(mg/cm <sup>2</sup> ) | Morphology             | Cycle performance                                                                                                                | Reference    |
|-------------------------------------------------------------------------|----------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|
| Electrospinning                                                         | 1.98± 0.2                        | fibers                 | 100 mA g <sup>-1</sup> , 100 cycles, 116.5 mAh g <sup>-1</sup><br>1000 mA g <sup>-1</sup> , 800 cycles, 77.8 mAh g <sup>-1</sup> | This<br>work |
| Sol-gel                                                                 | 5-6                              |                        | 100 mA g <sup>-1</sup> , 60 cycles, 74 mAh g <sup>-1</sup>                                                                       | 1            |
| Solid-state                                                             |                                  | particles              | 50 mA g <sup>-1</sup> , 50 cycles, 86.9 mAh g <sup>-1</sup>                                                                      | 2            |
| Solid-state                                                             |                                  | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 74 mAh g <sup>-1</sup>                                                                       | 3            |
| Solid-state and<br>Chemical<br>deposition<br>decomposition              |                                  | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 94.2 mAh g <sup>-1</sup>                                                                     | 4            |
| Solid-state                                                             | 2.38                             | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 75.2 mAh g <sup>-1</sup>                                                                     | 5            |
| Molten salt<br>synthesis                                                | 5                                | whiskers and particles | 100 mA g <sup>-1</sup> , 200 cycles, 70 mAh g <sup>-1</sup><br>100 mA g <sup>-1</sup> , 500 cycles, 62 mAh g <sup>-1</sup>       | 6            |
| Sol-gel<br>Solid-state<br>reaction                                      |                                  | particles              | 20 mA g <sup>-1</sup> , 40 cycles, 114.7 mAh g <sup>-1</sup><br>20 mA g <sup>-1</sup> , 40 cycles, 82.3 mAh g <sup>-1</sup>      | 7            |
| Solid state reaction                                                    | 1.25                             | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 177.5 mAh g <sup>-1</sup>                                                                    | 8            |
| Solid-state (dry)<br>and Solution-<br>assisted<br>sonochemical<br>(wet) |                                  | particles              | 0.05 C, 50 cycles,> 80 mAh g <sup>-1</sup> ,<br>0.05 C, 50 cycles, 60 mAh g <sup>-1</sup>                                        | 9            |
| Solvothermal                                                            |                                  | particles and spheres  | 50 mA g <sup>-1</sup> , 50 cycles, 103.9 mAh g <sup>-1</sup>                                                                     | 10           |
| Solvent thermal                                                         | 0.80                             | Hollow<br>microspheres | 50 mA g <sup>-1</sup> , 50 cycles, 172.3 mAh g <sup>-1</sup>                                                                     | 11           |
| Sol-gel synthesis                                                       |                                  | particles              | 10 mA g <sup>-1</sup> , 50 cycles, 95 mAh g <sup>-1</sup>                                                                        | 12           |
| Solid-state<br>reaction                                                 |                                  | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 211.8 mAh g <sup>-1</sup>                                                                    | 13           |
| Solid state                                                             | 1.25                             | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 75.2 mAh g <sup>-1</sup>                                                                     | 14           |
| Solid-state                                                             | 1.13                             | particles              | 100 mA g <sup>-1</sup> , 50 cycles, 189.2 mAh g <sup>-1</sup>                                                                    | 15           |
| Solid-state                                                             | 2.03                             | particles              | 50 mA g <sup>-1</sup> , 50 cycles, 206.7 mAh g <sup>-1</sup>                                                                     | 16           |
| Solid state reaction                                                    |                                  | particles              | 50 mA g <sup>-1</sup> , 50 cycles, 73.2 mAh g <sup>-1</sup>                                                                      | 17           |
| Solid-state                                                             |                                  | particles              | 500 mA g <sup>-1</sup> , 100 cycles, 136.9 mAh g <sup>-1</sup>                                                                   | 18           |

References

- S. Y. Yin, L. Song, X. Y. Wang, Y. H. Huang, K. L. Zhang and Y. X. Zhang, *Electrochem. Commun.*, 2009, 11, 1251-1254.
- K. Q. Wu, J. Shu, X. T. Lin, L. Y. Shao, P. Li, M. Shui, M. M. Lao, N. B. Long and D. J. Wang, J. Power Sources, 2015, 275, 419-428.
- P. Li, K. Q. Wu, P. F. Wang, X. T. Lin, H. X. Yu, M. Shui, X. Zhang, N. B. Long and J. Shu, *Ceram. Int.*, 2015, 41, 14508-14516.
- S. S. Qian, H. X. Yu, L. Yan, P. Li, X. T. Lin, Y. Bai, S. J. Wang, N. B. Long, M. Shui and J. Shu, *Ceram. Int.*, 2016, 42, 6874-6882.
- J. Shu, K. Q. Wu, P. F. Wang, P. Li, X. T. Lin, L. Y. Shao, M. Shui, N. B. Long and D. J. Wang, *Electrochim. Acta*, 2015, **173**, 595-606.
- S. Y. Yin, C. Q. Feng, S. J. Wu, H. L. Liu, B. Q. Ke, K. L. Zhang and D. H. Chen, J. Alloys Compd., 2015, 642, 1-6.
- K. Q. Wu, D. J. Wang, X. T. Lin, L. Y. Shao, M. Shui, X. X. Jiang, N. B. Long, Y. L. Ren, J. Shu, *J. Electroanal. Chem.*, 2014, 717-718, 10-16.
- P. F. Wang, P. Li, T. F. Yi, X. T. Lin, H. X. Yu, Y. R. Zhu, S. S. Qian, M. Shui and J. Shu, J. Power Sources, 2015, 297, 283-294.
- 9. S. Ghosh, Y. Kee, S. Okada and P. Barpanda, J. Power Sources, 2015, 296, 276-281.
- 10. S. S. Fan, H. T, Yu, Y. Xie, T. F. Yi and G. H. Tian, *Electrochim. Acta*, 2018, 259, 855-864.
- 11. S. S. Fan, H. Zhong, H. T. Yu, M. Lou, Y. Xie and Y. R. Zhu, *Sci. China Mater.*, 2017, **60**, 427-437.
- 12. D. Dambournet, L. Belharouak and K. Amine, Inorg. Chem., 2010, 49, 2822-2826.
- M. M. Lao, X. T. Lin, P. Li, L. Y. Shao, K. Q. Wu, M. Shui, N. B. Long, Y. L. Ren and J. Shu, *Ceram. Int.*, 2015, 41, 2900-2907.
- K. Q. Wu, J. Shu, X. T. Lin, L. Y. Shao, M. M. Lao, M. Shui, P. Li, N. B. Long and D. J. Wang, *J. Power Sources*, 2014, 272, 283-290.
- P. F. Wang, S. S. Qian, T. F. Yi, H. X. Yu, L. Yan, P. Li, X. T. Lin, M. Shui and J. Shu, ACS Appl. Mater. Interfaces, 2016, 8, 10302–10314.
- H. Lan, S. S. Qian, Q. Wang, L. Yan, H. X. Yu, P. Li, N. B. Long, M. Shu and J. Shu, *Ceram. Int.*, 2017, 43, 1552-1557.
- C. Sun, X. Li, X. Z. Wu, C. C. Zhu, H. X. Yu, Z. Y. Guo and J. Shu, J. Electroanal. Chem., 2017, 802, 100-108.
- 18. X. Han, X. Gui, W. Tao, X. F. Li and T. F. Yi, Ceram. Int., 2018, 44, 12273-12281.