Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Dual Carbon-Modified Nickel Sulfide Composites Toward High-Performance Electrodes for Supercapacitors

Jiapeng He^a, Can Guo^a, Shaowen Zhou^a, Yinlong Zhao^a, Qingpeng Wang^c, Shun Yang^{a,*}, Jiaqin Yang^{b,*}, Qinghong Wang^{a,*}

^a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.

^b School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.

^c Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.

E-mail: yangshun@jsnu.edu.cn (S. Yang), yjq8681@163.com (J. Q. Yang),

wangqh@jsnu.edu.cn (Q. H. Wang)

Figure S1. (a) XRD pattern, (b, c) SEM images and (d-f) TEM images of NiO@C/rGO precursor.

Figure S2. (a) XRD pattern, (b) SEM image and (c, d) TEM images of Ni/rGO

precursor.

Figure S3. (a) XRD pattern, (b) SEM image and (c, d) TEM images of NiO@C $\ensuremath{\texttt{NiO}}$

precursor.

Figure S4. TGA curves of the as-prepared Ni₃S₂@C/rGO, Ni₃S₂/rGO and Ni₃S₂@C composites.

Figure S5. (a) N₂ adsorption-desorption isotherms and (b) pore size distributions of the as-prepared Ni₃S₂@C/rGO, Ni₃S₂/rGO and Ni₃S₂@C composites.

Figure S6. Charge-discharge curves of (a) Ni₃S₂/rGO and (b) Ni₃S₂@C electrodes at different current densities.

Figure S7. CV curves of the (a) $Ni_3S_2@C/rGO$, (b) $Ni_3S_2@C$ and (c) Ni_3S_2/rGO electrode at different scan rates. (d) Dependence of the peak current density on square root of sweep rate for the as-prepared Ni_3S_2 electrodes (cathodic peaks).

Figure S8. (a) CV curves of the AC electrode at different scan rates. (b) Cycle performance of AC electrode at 5 A g⁻¹.

Figure S9. TEM images of (a, b) $Ni_3S_2@C/rGO$, (c, d) $Ni_3S_2@C$ and (e, f) Ni_3S_2/rGO electrodes after 1000 cycles at 5 A g⁻¹.

Table S1 Rate performance of $Ni_3S_2@C/rGO,\,Ni_3S_2@C$ and Ni_3S_2/rGO electrodes at

Current density	Ni ₃ S ₂ @C/rGO	Ni ₃ S ₂ /rGO	Ni ₃ S ₂ @C
$(A g^{-1})$	(F g ⁻¹)	$(F g^{-1})$	(F g ⁻¹)
1	1171	980	910
2	1107	936	830
5	1023	900	670
10	936	830	620
20	848	680	510

different current densities