# **Electronic Supplementary Information**

## **Experimental section**

**Materials:** Niobium oxalates (purity, 99.95%), oxalic acid, sodium sulfate, and ethanol were obtained from Aladdin Ltd. (Shanghai, China). CC was purchased from Hongshan District, Wuhan Instrument Surgical Instruments business. Salicylic acid, ammonium chloride, *p*-dimethylaminobenzaldehyde, sodium citrate dehydrate, sodium nitroferricyanide dihydrate, and sodium hypochlorite solution were purchased from Beijing Chemical Corp. (China). Ultrapure water used throughout all experiments was purified through a Millipore system. All the reagents were used as received without further purification.

**Preparation of Nb<sub>2</sub>O<sub>5</sub>/CC:** Typically, 1.07 g niobium oxalates (2 mmol) and 1.13 g oxalic acid (9 mmol) was mixed in 40 mL deionized water. Then, the solution was heated to 80°C for 20 min with stirring. After that, a piece of CC (2 cm  $\times$  2 cm) was immersed into the solution and was transferred into a 50 ml Teflon-lined autoclave. The autoclave was sealed and heated at 180 °C for 12 h in an electric oven. Finally, the obtained material was washed and dried.

**Preparation of Nb<sub>2</sub>O<sub>5</sub>/CP:** First, 5 mg Nb<sub>2</sub>O<sub>5</sub> powder and 20  $\mu$ L of Nafion solution (5 wt%) were dispersed in 980  $\mu$ L mixed solution contain ethanol and H<sub>2</sub>O (V:V=2:1) by 0.5 h sonication to form a homogeneous ink. Then 20  $\mu$ L catalyst ink was loaded on a 1 × 1 cm<sup>2</sup> CP and dried under ambient condition for measurement.

**Characterizations:** XRD patterns were obtained from a Shimazu XRD-6100 diffractometer with Cu K $\alpha$  radiation (40 kV, 30 mA) of wavelength 0.154 nm (Japan).

SEM images were collected from the tungsten lamp-equipped SU3500 scanning electron microscope at an accelerating voltage of 20 kV (HITACHI, Japan). TEM images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer were measured on SHIMADZU UV-1800 ultraviolet-visible (UV-Vis) spectrophotometer. A gas chromatograph (SHIMADZU, GC-2014C) equipped with MolSieve 5A column and Ar carrier gas was used for H<sub>2</sub> quantifications. Gas-phase product was sampled every 1000 s using a gas-tight syringe (Hamilton).The data of ion chromatography were measured on Swiss Wang tong ECO.

**Electrochemical measurements:** The electrochemical performance measurement was performed in a two-compartment cell separatedby Nafion membrane using a CHI 660E station. Before NRR test, Nafion membrane was protonated by boiling in water for 1 h, then in H<sub>2</sub>O<sub>2</sub> for 1 h, then in water for another hour, followed by 3 h in 0.5 M H<sub>2</sub>SO<sub>4</sub>, and finally for 6 h in water. All steps were performed at 80°C. TheNb<sub>2</sub>O<sub>5</sub>/CC was used as the working electrode (0.4 cm  $\times$  0.5 cm), a graphite rod as the counter electrode and Ag/AgCl electrode as the reference. Before the NRR measurements, the Na<sub>2</sub>SO<sub>4</sub> electrolyte (0.1 M) was bubbled with N<sub>2</sub> for 20 min. All experiments were carried out at room temperature (~25 °C). The presented current density was referred to the geometrical area of the CC. For N<sub>2</sub> reduction experiments, potentiostatic test was conducted in N<sub>2</sub>-saturated 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution. N<sub>2</sub> was continuously fed into the cathodic compartment with a properly positioned sparger during the experiments. The

potentials reported in this work were converted to reversible hydrogen electrode (RHE) scale via calibration with the following equation: in 0.1 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution, E (vs. RHE) = E (vs. Ag/AgCl) +  $0.059 \times pH + 0.197$  V.

**Determination of NH<sub>3</sub>:** NH<sub>3</sub> concentration was detected by salicylic acid analysis method using UV-Vis spectrophotometry. In detail, 4 mL electrolyte was obatined from the cathodic chamber and mixed with 50 µL oxidizing solution containing NaClO (pCl = 4 ~ 4.9) and NaOH (0.75 M), 500  $\mu$ L coloring solution containing 0.4 M C<sub>7</sub>H<sub>6</sub>NaO<sub>3</sub> and 0.32 M NaOH, and 50 µL catalyst solution (1 wt% Na<sub>2</sub>[Fe(CN)<sub>5</sub>NO]) for 2 h. Absorbance measurements were performed at  $\lambda$ =660 nm. The concentrationabsorbance curve was calibrated using standard NH<sub>4</sub>Cl solution with NH<sub>3</sub> concentrations of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 µg mL<sup>-1</sup> in 0.1 M Na<sub>2</sub>SO<sub>4</sub>. Typically, 500 µg mL<sup>-1</sup> NH<sub>3</sub> solution was prepared (0.79g NH<sub>4</sub>Cl dissolved in 500 ml deionized water) and diluted to 5  $\mu$ g mL<sup>-1</sup>. Then, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 mL NH<sub>3</sub> solution with concentration of 5 µg mL<sup>-1</sup> were poured into 10 mL test tubes and separately diluted to 10 mL with 0.1 M Na<sub>2</sub>SO<sub>4</sub> and the resulting concentrations of NH<sub>3</sub> in the solutions are 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6  $\mu$ g mL<sup>-1</sup>. The fitting curve (y=0.66x+0.02, R<sup>2</sup>=0.999) shows good linear relation of absorbance value with NH<sub>3</sub> concentration by three times independent calibrations. The NH<sub>3</sub> concentration was calculated from the calibration curve, and the rate of NH<sub>3</sub> yield was calculated using the following equation:

NH<sub>3</sub> yield =  $(c_{NH3} \times V) / (17 \times t \times A)$ 

where  $c_{NH3}$  is the measured NH<sub>3</sub> concentration, V is the volume of electrolyte, t is the reduction reaction time and A is the geometric area of the cathode (0.4 cm × 0.5 cm).

**Determination of FE:** Assuming three electrons were needed to produce one  $NH_3$  molecule, the FE in 0.1 M  $Na_2SO_4$  could be calculated as follows:

 $FE = 3F \times c_{NH3} \times V / 17 \times Q$ 

Where F is the Faraday constant, Q is the quantity of applied electricity.

**Determination of N<sub>2</sub>H<sub>4</sub>:** The concentration of N<sub>2</sub>H<sub>4</sub> was prepared as follows. Firstly, 2 mg mL<sup>-1</sup> N<sub>2</sub>H<sub>4</sub> solution was prepared and diluted to 2  $\mu$ g mL<sup>-1</sup>. Then, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 5.0 mL N<sub>2</sub>H<sub>4</sub> solution with concentration of 2  $\mu$ g mL<sup>-1</sup> were poured into 10 mL test tubes and separately diluted to 5 mL with 0.1 M Na<sub>2</sub>SO<sub>4</sub> and the resulting concentrations of N<sub>2</sub>H<sub>4</sub> in the solutions are 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0  $\mu$ g mL<sup>-1</sup>. The N<sub>2</sub>H<sub>4</sub> present in the electrolyte was determined by the method of Watt and Chrisp. Thep-C<sub>9</sub>H<sub>11</sub>NO (5.99 g), 0.1 M Na<sub>2</sub>SO<sub>4</sub> (30 mL), and C<sub>2</sub>H<sub>5</sub>OH (300 mL) were mixed and used as a color reagent. In detail, 5 mL electrolyte was removed from the electrochemical reaction vessel, and added into 5 mL prepared color reagent and stirred 15 min at 25 °C. The obtained calibration curve of N<sub>2</sub>H<sub>4</sub> is Y=0.366 X + 0.053, R<sup>2</sup>=0.999.

**Calculation of ECSA:** Electrochemical capacitance measurements were used to determine the active surface area of Nb<sub>2</sub>O<sub>5</sub>/CC. To measure the electrochemical capacitance, the potential was swept between -0.41 to -0.51 V with scanning rates of 20, 40, 60, 80, 100, and 120 mV s<sup>-1</sup>, respectively. The specific capacitance can be converted into an ECSA using the specific capacitance value for a flat standard with 1

 $cm^2$  of real surface area. The specific capacitance for a flat surface is generally found to be in the range of 20–60  $\mu$ F cm<sup>-2</sup>. In the following calculations of TOF we assume 60  $\mu$ F cm<sup>-2</sup>.

### **ECSA calculation:**

$$A_{ECSA}^{Nb_2O_5} = \frac{701\,\mu F\,cm^{-2}}{60\,\mu F\,cm^{-2} per\,cm_{ECSA}^2} = 11.68\,cm_{ECSA}^2$$

## **TOF calculation:**

$$TOF = \frac{NH_3 \text{ yield} \times \text{geometric area} \times 17 \times N_A}{\text{surfacs sites} \times A_{\text{ECSA}}}$$

Since the exact nitrogen binding sites are not known, we conservatively estimate the number of active sites as the total number of surface sites (only Nb atoms as possible active sites) from the roughness factor together with the unit cell of the  $Nb_2O_5$  (Fig. S19).

#### Surface sites per real surface area:

Surfaces sites = 
$$\left(\frac{Atoms \ per \ unit \ cell}{Volume/unit \ cell}\right)^{\frac{2}{3}} = 8.26 \times 10^{14} \ atoms \ cm_{real}^{-2}$$

**Calculation Details:** DFT-based first-principles calculations were performed with the generalized gradient approximation  $(GGA)^1$  in the form of the Perdew, Burke, and Ernzerhof  $(PBE)^2$  exchange-correlation functional, as implemented in the Dmol<sup>3</sup> package.<sup>1,3</sup> Geometry optimization was performed using a six atom layers Nb<sub>2</sub>O<sub>5</sub> (001) surface with 20 Å vacuum space to avoid the interaction form nearby layers. Layers 1 to 2 are surface layers, layers 3 to 6 are central layers. All atoms were fully relaxed until the convergence criteria for energy were set to be  $10^{-5}$  eV, and the residual forces on each atom became smaller than 0.002 Ha Å<sup>-1</sup>. The N<sub>2</sub> dissociation minimum energy

path (MEP) was obtained by LST/QST tools in DMol<sup>3</sup> code.<sup>4</sup> The Brillouin zone integration was performed with  $1 \times 2 \times 1$   $\Gamma$ -centred Monkhorst-Pack k-point meshes in geometry optimization. Frequencies of each complex were calculated after geometry optimization, and the free energy was obtained as follows:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_u$$

where  $\Delta E$  is the difference in DFT-calculated total energy change,  $\Delta ZPE$  and  $\Delta S$  are the difference in zero-point energy and the change in entropy between the products and reactants, respectively. T is the temperature (298.15 K),  $\Delta G_U = -neU$ , where U is the electrode potential with respect to the normal hydrogen electrode, and *n* is the number of transferred charge. The N<sub>2</sub> adsorption energy is defined asfollows:

$$E_{ads} = E_{N_2/substrate} - E_{substrate} - E_{N2}$$



Fig. S1. SEM images of bare CC.

| - Nb   |          |        | والمتراف المترجع   |
|--------|----------|--------|--------------------|
| 0.08 — | Elements | Wt (%) | Atomatic ratio (%) |
|        | C        | 50.36  | 70.37              |
|        | 0        | 25.12  | 19.96              |
| 0.06   | Nb       | 65.30  | 8.93               |
| 0.06-  | Pt       | 8.63   | 0.74               |
| - C    | Total    | 100.00 | 100.00             |
| 0.02   | Pt Pt    | Pt Nb  | Nb<br>             |
| 0      | 10       |        | 20 keV             |

Fig. S2. EDX spectrum of  $Nb_2O_5/CC$ .



Fig. S3. SAED pattern takenfrom Nb<sub>2</sub>O<sub>5</sub>nanowires.



Fig. S4. LSV curves of Nb<sub>2</sub>O<sub>5</sub>/CC in Ar- and N<sub>2</sub>-saturated 0.1 M Na<sub>2</sub>SO<sub>4</sub> with a scan rate of 5 mV s<sup>-1</sup>.



Fig. S5. LSV curves of bare CC in Ar- and N<sub>2</sub>-saturated 0.1 M Na<sub>2</sub>SO<sub>4</sub> with a scan rate of 5 mV s<sup>-1</sup>.



Fig. S6. (A) UV-Vis absorption spectra of various  $NH_3$  concentrations after incubated for 2 h at room temperature. (B) Calibration curve used for calculation of  $NH_3$  concentrations.



Fig. S7. (A) UV-Vis absorption spectra of various  $N_2H_4$  concentrations after incubated for 15 min at room temperature. (B) Calibration curve used for estimation of  $N_2H_4$ concentrations.



**Fig. S8.**  $NH_3$  yields and FEs for  $Nb_2O_5/CC$  at a series of potentials for 10000 s obtained by Ion chromatography.



Fig. S9. UV-Vis spectra of the electrolyte stained with indophenol indicator before and after 10000s electrolysis at open potential in  $N_2$ -saturated solution.



Fig. S10. UV-Vis spectra of the electrolyte stained with indophenol indicator before and after 10000 s electrolysis at the potential of -0.60 V in Ar-saturated solution on  $Nb_2O_5/CC$ .



Fig. S11. (A) Time-dependent current density curves for  $Nb_2O_5/CP$  at different potentials in 0.1 M  $Na_2SO_4$ . (B) UV-Vis absorption spectra of the 0.1 M  $Na_2SO_4$  electrolytes stained with indophenol indicator after electrolysis at a series of potentials. (C)  $NH_3$  yields and FEs at each given potential.



**Fig. S12.** UV-Vis spectra of the electrolyte stained with indophenol indicator after 10000 s electrolysis in N<sub>2</sub>-saturated solution at the potential of -0.60 V using bare CP, bare CC, Nb<sub>2</sub>O<sub>5</sub>/CP and Nb<sub>2</sub>O<sub>5</sub>/CC as the working electrode, respectively.



Fig. S13. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp before and after 10000 s electrolysis in  $N_2$ -saturated solution at -0.60 V.



Fig. S14. (A) Comparison of the amounts of H<sub>2</sub> determined by gas chromatography from the headspace of the cell in Ar- and N<sub>2</sub>-saturated solution at various potentials.(B) The calculated HER and NRR selectivity.



**Fig. S15.** CVs for (A) Nb<sub>2</sub>O<sub>5</sub>/CC and (B) bare CC in the non-faradaic capacitance current range at scan rates of 20, 40, 60, 80, 100, and 120 mV s<sup>-1</sup>. Corresponding capacitive currents at 0.46 V as afunction of scan rate for (C) Nb<sub>2</sub>O<sub>5</sub>/CC and (D) bare CC in 0.1 M Na<sub>2</sub>SO<sub>4</sub>, respectively.



Fig. S16. Plot of TOF vs. potential for  $Nb_2O_5/CC$ .



Fig. S17. Chrono-amperometry curve at potential of -0.60 V using Nb<sub>2</sub>O<sub>5</sub>/CC catalyst.



Fig. S18. NH<sub>3</sub> yield rates of Nb<sub>2</sub>O<sub>5</sub>/CC after charging at -0.60 V for 10000 s (initial) and 20 h.



Fig. S19. SEM images of  $Nb_2O_5/CC$  after stability test in 0. 1 M  $Na_2SO_4$ .



Fig. S20. XRD pattern for  $Nb_2O_5/CC$  after stability test in 0.1 M  $Na_2SO_4$ .



**Fig. S21.** XPS spectra for  $Nb_2O_5/CC$  after stability test in the (A) Nb 3d and (B) O 1s regions.



Fig. S22. NH<sub>3</sub> yields and FEs of Nb<sub>2</sub>O<sub>5</sub>/CC with different electrolyte concentrations.



Fig. S23. Nb<sub>2</sub>O<sub>5</sub> unit cell.

| Catalyst                                              | Electrolyte                           | NH <sub>3</sub> yield rate                                     | FE (%) | Ref.         |
|-------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|--------|--------------|
| Nb <sub>2</sub> O <sub>5</sub> /CC                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 1.58×10 <sup>-10</sup><br>mol s <sup>-1</sup> cm <sup>-2</sup> | 2.26   | This<br>work |
|                                                       |                                       | 17.63 $\mu g h^{-1} m g^{-1} cat.$                             |        |              |
| Fe <sub>2</sub> O <sub>3</sub> -CNT                   | KHCO3                                 | 3.58×10 <sup>-12</sup> mol s <sup>-1</sup> cm <sup>-2</sup>    | 0.15   | 5            |
| Fe <sub>3</sub> O <sub>4</sub> /Ti                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $5.60 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 2.60   | 6            |
| Fe/Fe <sub>3</sub> O <sub>4</sub>                     | 0.1 M PBS                             | $3.10 \times 10^{-12} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 8.29   | 7            |
| Fe <sub>2</sub> O <sub>3</sub><br>nanorods            | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 15.9 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>       | 0.94   | 8            |
| PEBCD/C                                               | 0.5 M Li <sub>2</sub> SO <sub>4</sub> | $2.58 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 2.85   | 9            |
| MoS <sub>2</sub> /CC                                  | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 8.08×10 <sup>-11</sup> mol s <sup>-1</sup> cm <sup>-2</sup>    | 1.17   | 10           |
| defect-rich<br>MoS <sub>2</sub><br>nanoflower         | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 29.28 µg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>      | 8.34   | 11           |
| TiO <sub>2</sub>                                      | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $9.16 \times 10^{-11}$ mol s <sup>-1</sup> cm <sup>-2</sup>    | 2.50   | 12           |
| TiO <sub>2</sub> -rGO                                 | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 15.13 μg h <sup>-1</sup> mg <sup>-1</sup> cat.                 | 3.3    | 13           |
| hollow Cr <sub>2</sub> O <sub>3</sub><br>microspheres | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 25.3 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>  | 6.78   | 14           |
| C-TiO <sub>2</sub>                                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $16.22 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                   | 1.84   | 15           |
| MnO                                                   | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $1.11 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 8.02   | 16           |
| Mn <sub>3</sub> O <sub>4</sub><br>nanocube            | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 11.6 μg h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>       | 3.0    | 17           |
| SnO <sub>2</sub>                                      | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $1.47 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 2.17   | 18           |
| Porous<br>bromide-<br>derived Ag<br>film              | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $2.07 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$      | 7.36   | 19           |
| Boron-doped<br>TiO <sub>2</sub>                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 14.4 $\mu g h^{-1} m g^{-1}_{cat.}$                            | 3.4    | 20           |

**Table S1.** Comparison of the  $NH_3$  electrosynthesis activity for  $Nb_2O_5/CC$  with other catalysts.

| Sample | Potential (V vs. RHE) | Concentration (NH <sub>4</sub> <sup>+</sup> , mg L <sup>-1</sup> ) |  |
|--------|-----------------------|--------------------------------------------------------------------|--|
| 1      | -0.50                 | 0.0729                                                             |  |
| 2      | -0.55                 | 0.0908                                                             |  |
| 3      | -0.60                 | 0.1961                                                             |  |
| 4      | -0.65                 | 0.0659                                                             |  |
| 5      | -0.70                 | 0.0391                                                             |  |
| 6      | -0.75                 | 0.0337                                                             |  |
| 7      | -0.80                 | 0.0177                                                             |  |

**Table S2.** Data obtained from the Ion chromatography for NH4+ concentrations after

 electrolysis for 10000s at a series of potentials.

| Potential (V) | Yield rate (GSA)<br>(mol s <sup>-1</sup> cm <sup>-2</sup> ) | Yield rate (ECSA)<br>(mol s <sup>-1</sup> cm <sub>ECSA</sub> <sup>-2</sup> ) | Yield rate (Mass)<br>(µgh <sup>-1</sup> mg <sup>-1</sup> cat.) |
|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|
| -0.50         | 2.31× 10 <sup>-11</sup>                                     | $1.97 \times 10^{-12}$                                                       | 2.57                                                           |
| -0.55         | 3.63× 10 <sup>-11</sup>                                     | $3.11 \times 10^{-12}$                                                       | 4.04                                                           |
| -0.60         | $1.58 \times 10^{-10}$                                      | $1.36 \times 10^{-11}$                                                       | 17.63                                                          |
| -0.65         | 5.61 ×10 <sup>-11</sup>                                     | $4.80 	imes 10^{-12}$                                                        | 6.24                                                           |
| -0.70         | 4.12 ×10 <sup>-11</sup>                                     | $3.53 \times 10^{-12}$                                                       | 4.59                                                           |
| -0.75         | 3.31 ×10 <sup>-11</sup>                                     | $2.82 \times 10^{-12}$                                                       | 3.67                                                           |
| -0.80         | 2.81 ×10 <sup>-11</sup>                                     | $2.40 	imes 10^{-12}$                                                        | 3.12                                                           |

Table S3. ECSA and mass normalized  $\rm NH_3$  yield rates.

### References

- 1 B. Delley, J. Chem. Phys., 1990, 92, 508–517.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 3 B. Delley, J. Chem. Phys., 2000, 113, 7756–7764.
- 4 N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith and J. Andzelm, *Comp. Mater. Sci.*, 2003, 28, 250–258.
- 5 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, Angew. Chem., Int. Ed., 2017, 56, 2699–2703.
- 6 Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie and X. Sun, *Nanoscale*, 2018, **10**, 14386–14389.
- 7 L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden and X. Feng, ACS Catal., 2018, 8, 9312–9319.
- 8 X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, 10, 4530–4535.
- G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J.
   Am. Chem. Soc., 2017, 139, 9771–9774.
- L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen,
  B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Energy Mater.*, 2018, 8, 1801357..
- 12 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl. Mater. Interfaces, 2018, 10, 28251–28255.
- 13 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, T. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 17303–17306.
- Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li and X. Sun, ACS Catal., 2018, 8, 8540–8544.

- 15 K. Jia, Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X. Guo and X. Sun, *Nanoscale Adv.*, 2018, DOI: 10.1039/C8NA00300A.
- Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo,
  Y. Li, P. Gao, X. Shi, B. Li, B. Tang and X. Sun, *Adv. Sci.*, 2018, 5, 1801182.
- 17 X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, *Small*, 2018, 14, 180311.
- 18 L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. Li and X. Sun, *Chem. Commun.*, 2018, 54, 12966–12969.
- 19 L. Ji, X. Shi, A. M. Asiri, B. Zheng and X. Sun, *Inorg. Chem.*, 2018, 57, 14692–14697.
- 20 Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo and X. Sun, ACS Sustainable Chem. Eng., 2018, DOI: 10.1021/acssuschemeng.8b05332.