Electronic Supplementary Information (ESI)

Interlayer-expanded and defect-rich metal dichalcogenide (MX₂) nanosheets for active and stable hydrogen evolution

Jun Xu,*^a Yanyan Huang,^a Xialan Cheng,^a Tong Liu,^a Yingchun Lu,^a Xing Chen,^a Yu You^a and Junjun Zhang^{*b}

 ^a School of Electronic Science & Applied Physics, and Micro Electromechanical System Research Center of Engineering and Technology of Anhui Province, Hefei University of Technology, Hefei 230009, P.R. China. E-mail: <u>apjunxu@hfut.edu.cn</u>
^b Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China, E-mail: <u>cnjjzhang@gmail.com</u>

Fig. S1 HRTEM images of the annealed $MoSe_2$ (a,b) and WS_2 (c,d) nanosheets and the corresponding line intensity profile for measuring the spacings.

Fig. S2 TG curves of the freshly-prepared MoSe₂ and WS₂ samples.

Fig. S3 LSV curves of the various freshly-prepared $MoSe_2$ and WS_2 catalysts before and after 3000 cycles.

Fig. S4 SEM images of (a) the $MoSe_2$ and (b) the WS_2 electrocatalysts after stability measurement.

No.	Catalysts	η ₀ (mV)	η ₁₀ (mV)	Tafel Slope (mV dec ⁻¹)	Stability	Ref.
1	IEDR MoSe ₂	-83	-146	51	48 h	This work
2	1T-MoSe ₂ nanosheets	-60	-240	78	3000 cycles	J. Mater, Chem. A 2016, 4, 14949.
3	MoSe ₂ nanoparticles	-120	-270	94	2 h	J. Mater. Chem. A
	MoSe ₂ nanosheets	-200	-290	110	/	2014, 2, 360.
4	Expanded MoSe ₂					Nanoscale 2016, 8, 16886.
	nanosheets on N-doped carbon nanotubes	/	-102	53	20 h	
	3D hierarchial MoSe ₂ on carbon fiber paper	-171	/	69.2	/	J. Mater. Chem. A 2017, 5, 19752.
5	3D hierarchial MoSe ₂ /NiSe ₂ composite nanowires on carbon fiber paper	-148	/	46.9	1000 cycles	
6	MoSe ₂ nanosheets on carbon paper	-70	-182	69	10000 s	ACS. Appl. Mater. Interfaces 2016, 8, 7077.
7	MoSe ₂ /rGO nanocrystals on carbon nanotubes	-200	-240	53	10000 s	ACS. Appl. Mater. Interfaces 2017, 9, 10673.
	MoSe ₂ nanocrystals on carbon paper	-200	-260	70	/	
	MoSe ₂ nanocrystals	-250	-330	115	/	
8	1T and 2H MoSe ₂ /Mo Core-Shell 3D-Hierarchial	-89	-166	34.7	/	Adv. Mater. 2016, 28, 9831.
9	IEDR WS ₂	-70	-139	55	48 h	This work
10	1 T-WS ₂	-58	-110	55	/	ACS. Appl. Mater. Interfaces 2016, 8, 13966.
	WO ₃ ·2H ₂ O nanoplates/WS ₂ hybrid catalysis	-60	/	54	3 h	
11	WS ₂ nanodots	-90	-170	51	1000 cycles	ACS Nano 2016, 10, 2159.
	Bulk WS_2	-290	-600	119	/	
12	WS_2 nanotubes	-169	-310	113	2 h	ACS Nano 2014, 8, 8468.

Table S1 Electrocatalytic HER performances of the MX₂-based catalysts.

13	WS ₂ /graphene hybrid	119	/	43	8 h	J. Mater. Chem. A
	catalyst					2016, 4, 9472.
14	WS ₂ -Ta	-320	-750	180	/	ACS Catal.
	Undoped-WS ₂	-340	-690	220	/	2016, 6, 5724.
15	WS ₂ nanosheets on	-75	-115.7	79.6	1000	J. Mater. Chem. A
	carbon paper				cycles	2017, 5, 15552.
16	WS ₂ nanosheets	/	-190	84	1000	ACS. Appl. Mater. – Interfaces 2017, 9, 30591.
	coated graphene				1000	
	foam				cycles	
	WS ₂ nanosheets on	/	-350	91	/	
	glass carbon					
	electrodes					
17	Ultrathin WS ₂	-100	/	48	10000	Angew. Chem. Int.
	nanoflakes				cycles	Ed. 2014, 53, 7860.
18	IEDR SnS ₂	-92	-182	65	48 h	This work
19	Trace Pt decorated					ACS. Appl. Mater.
	SnS ₂ nanosheets on	-32	-117	69	12 h	Interfaces
	carbon paper					2017, 9, 37750.
20	SnS ₂ nanosheets by	-350	-730	150	/	J. Phys. Chem. C
	CVD					2016, 120, 244098.