Supporting Information

Effect of calcination temperature on microstructure of vanadium

nitride/nitrogen-doped graphene nanocomposite as an anode material

in electrochemical capacitors

Jinghua Liu,^a Fengfan Li,^a Weiwei Liu^a and Xin Li*^{a,b}

^{a,} MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China. E-mail: lixin@hit.edu.cn

^{b,} State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

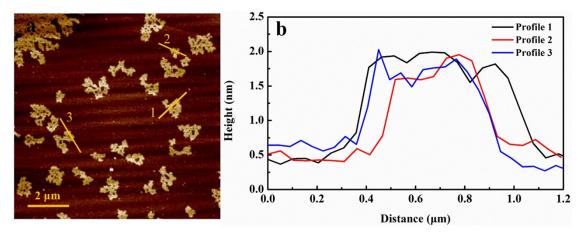


Fig. S1 (a) AFM image of N-Gr, (b) AFM height profiles of N-Gr. The position of the profiles are marked as yellow lines in (a).

AFM was used to investigate the layer thickness of N-Gr. As shown in Fig. S1, AFM image (Fig. S1a) proves the presence of layer structure of carbon nanosheets on a mica substrate. The depth profiles (Fig. S1b) demonstrate that the heights of carbon nanosheets are in the range of 1-2 nm, indicating that the carbon nanosheets can be seen as graphene with three or four layers of carbon lattice [Ref. 1-2].

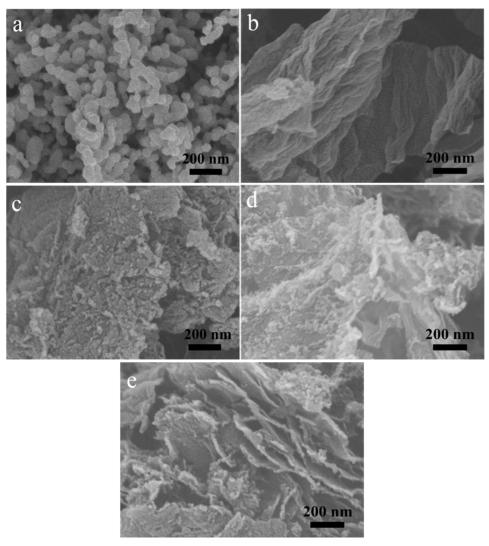


Fig. S2 SEM images of (a) VN, (b) N-Gr, (c) VN/N-Gr-700, (d) VN/N-Gr-800, (e) VN/N-Gr-900

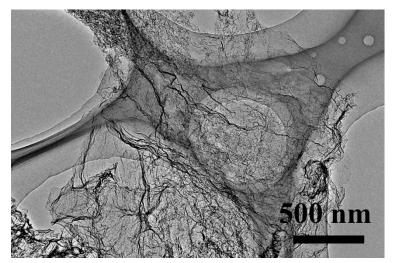


Fig. S3 TEM image of N-Gr

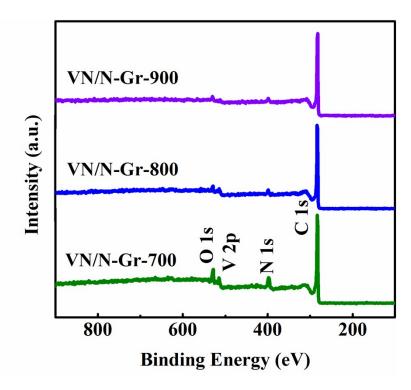


Fig. S4 XPS survey spectra of VN/N-Gr-700, VN/N-Gr-800, and VN/N-Gr-900.

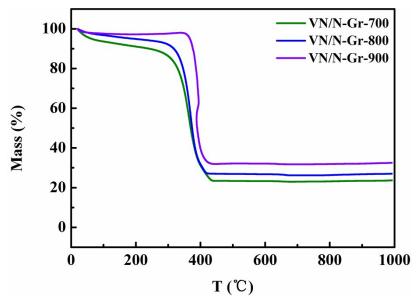


Fig. S5 TGA curves of VN/N-Gr-700, VN/N-Gr-800, and VN/N-Gr-900 in air.

The TGA curves of VN/N-Gr-700, VN/N-Gr-800, and VN/N-Gr-900 were conducted in air atmosphere from room temperature to 1000 °C with a heating rate of 5 °C min⁻¹. As shown in Fig. S5, before 300°C, all curves firstly descend due to the decomposition of oxygenous and nitrogenous groups. After that, the mass change is caused by the duplicate effect between the transformation of carbon into CO_2 and VN into V_2O_5 . In the next step, the mass loss takes place owing to the combustion of carbon [Ref. 3-4]. Calculated from the TGA curves, the content of VN in VN/N-Gr-700, VN/N-Gr-800, and VN/N-Gr-900 is 16.9 wt%, 19.3 wt%, and 23.2 wt%, respectively.

Materials	Potential range (V)	Electrolytes	Capacitance
VN/C [Ref. 3]	-1.2 - 0	2 М КОН	195.7 F g ⁻¹ at 1 A g ⁻¹
porous carbon fiber@VN [Ref. 4]	-1.1 - 0	6 М КОН	245.0 F g ⁻¹ at 0.5 A g ⁻¹
VN/Porous Carbon [Ref. 5]	-1.15 - 0	2 М КОН	255.0 F g ⁻¹ at 1 A g ⁻¹
VN/N-doped graphene [Ref. 6]	-1.2 - 0	6 М КОН	255 F g ⁻¹ at 10 mV s ⁻¹
VN/porous carbon [Ref. 7]	-1.15 - 0	2 M KOH	284.0 F g ⁻¹ at 0.5 A g ⁻¹
N-doped carbon nanosheets/VN [Ref. 8]	-1.15 - 0	2 M KOH	280.0 F g ⁻¹ at 1 A g ⁻¹
VN/N-doped graphene [Ref. 9]	-1.2 - 0	6 М КОН	445.0 F g ⁻¹ at 1 A g ⁻¹
VN/carbon fibre [Ref. 10]	-1.2 - 0	6 М КОН	530 F g ⁻¹ at 1 A g ⁻¹
this work	-1.0 - 0.2	2 M KOH	342.1 F g ⁻¹ at 0.5 A g ⁻¹

 Table S1 Summary of the recently reported vanadium-based/carbon hybrids and their electrochemical

 performances in three-electrode configurations.

References

[Ref. 1] M. Hu and B. X. Mi, Environ. Sci. Technol., 2013, 47, 3715-3723.

- [Ref. 2] X. H. Li, S. Kurasch, U. Kaiser and M. Antonietti, *Angewandte Chemie-International Edition*, 2012, **51**, 9689-9692.
- [Ref. 3] Y. Liu, L. Y. Liu, Y. T. Tan, L. B. Kong, L. Kang and F. Ran, J. Phys. Chem. C, 2018, 122, 143-149.
- [Ref. 4] F. Ran, Y. G. Wu, M. H. Jiang, Y. T. Tan, Y. Liu, L. B. Kong, L. Kang and S. W. Chen, *Dalton Trans.*, 2018, 47, 4128-4138.
- [Ref. 5] Y. L. Yang, K. W. Shen, Y. Liu, Y. T. Tan, X. N. Zhao, J. Y. Wu, X. Q. Niu and F. Ran, *Nano-Micro Letters*, 2017, 9, UNSP 6.
- [Ref. 6] H. H. Liu, H. L. Zhang, H. B. Xu, T. P. Lou, Z. T. Sui and Y. Zhang, *Nanoscale*, 2018, **10**, 5246-5253.
- [Ref. 7] F. Ran, Z. Wang, Y. L. Yang, Z. Liu, L. B. Kong and L. Kang, *Electrochim. Acta*, 2017, **258**, 405-413.
- [Ref. 8] Y. T. Tan, Y. Liu, Z. H. Tang, Z. Wang, L. B. Kong, L. Kang, Z. Liu and F. Ran, Sci Rep, 2018, 8, 2915.
- [Ref. 9] J. Balamurugan, G. Karthikeyan, T. D. Thanh, N. H. Kim and J. H. Lee, *Journal of Power Sources*, 2016, **308**, 149-157.
- [Ref. 10] G. H. An, D. Y. Lee and H. J. Ahn, Journal of Materials Chemistry A, 2017, 5, 19714-19720.