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Figure S1. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the BIMe complexes. PBE1PBE/6-

311+G(d)&SDD level of

theory.
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Figure S2. Energies and optimized structures of 2-BIMe isomers.
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Figure S3. Energies and optimized structures of 4-BIMe isomers.
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Figure S4. Optimized structures and selected bond distances (in angstroms) for 1-BIMe
— 7-BIMe complexes. The atomic movements corresponding to the imaginary
frequencies are depicted by red arrows.
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Figure S5. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the IMe complexes. PBE1PBE/6-

311+G(d)&SDD level of theory.
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Figure S6. Energies and optimized structures of 2-1Me isomers.

S9



4a-IMe 4b-IMe
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Figure S7. Energies and optimized structures of 4-1Me isomers.
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Figure S8. Optimized structures and selected bond distances (in angstroms) for 1-1Me —
7-IMe complexes. The atomic movements corresponding to the imaginary frequencies

are depicted by red arrows.

S11



SIMe complexes

A .
\(E+ZPE)
\G 3-TS-SIMe
1-SIMe 3.8
— 2-SIMe
3.2
8.9
96
-16.9 A
7.1
5-TS-SIMe
25.7
\ ) 6-SIMe
N 4-SIMe 20 T
NHC = IMe ¢ 414 405
N 248
/ \ 7-SIMe
-95.3 531
-58.5
57.6
-60.1
~76.8
Reaction path -81.1

Figure S9. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the SIMe complexes. PBE1PBE/6-

311+G(d)&SDD level of theory.
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Figure S10. Energies and optimized structures of 2-SIMe isomers.
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Figure S11. Energies and optimized structures of 4-SIMe isomers.
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Figure S12. Optimized structures and selected bond distances (in angstroms) for 1-SIMe
— 7-SIMe complexes. The atomic movements corresponding to the imaginary frequencies
are depicted by red arrows.
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Figure S13. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the PIMe complexes. PBE1PBE/6-
311+G(d)&SDD level of theory.
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Figure S14. Energies and optimized structures of 2-PIMe isomers.
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Figure S15. Energies and optimized structures of 4-PIMe isomers.
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Figure S16. Optimized structures and selected bond distances (in angstroms) for 1-PIMe
— 7-PIMe complexes. The atomic movements corresponding to the imaginary
frequencies are depicted by red arrows.
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Figure S17. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the DIMe complexes. PBE1PBE/6-
311+G(d)&SDD level of theory.
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2a-DiMe 2b-DIMe
AE = 0; A(E+ZPE) = 0; AG = 0 kcal/mol AE = 0; A(E+ZPE) = 0; AG = -0.5 kcal/mol
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AE =-0.3; A(E+ZPE) = -0.5; AG = -2.0 kcal/mol AE =4.2; A(E+ZPE) = 4.0; AG = 2.4 kcal/mol

Figure S18. Energies and optimized structures of 2-DIMe isomers.
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Figure S19. Energies and optimized structures of 4-DIMe isomers.
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7-DIMe

Figure S20. Optimized structures and selected bond distances (in angstroms) for 1-DIMe
— 7-DIMe complexes. The atomic movements corresponding to the imaginary
frequencies are depicted by red arrows.
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Figure S21. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the IMes complexes (transition state 3-TS
not found). PBE1PBE/6-311+G(d)&SDD level of theory.
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AE = -4.3; A(E+ZPE) = -4.4; AG =-4.9 kcal/mol AE =1.0; A(E+ZPE) = 1.3; AG = -1.5 kcal/mol

Figure S22. Energies and optimized structures of 2-1Mes isomers.
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4a-IMes 4b-IMes
AE = 0; A(E+ZPE) = 0; AG = 0 kcal/mol AE =-4.1; A(E+ZPE) = -3.8; AG = -0.8 kcal/mol

4c-IMes

AE =7.0; A(E+ZPE) = 6.6; AG = 7.2 kcal/mol

Figure S23. Energies and optimized structures of 4-1Mes isomers.
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Figure S24. Optimized structures and selected bond distances (in angstroms) for 1-1Mes
— 7-IMes complexes (3-TS structure not found). The atomic movements corresponding
to the imaginary frequencies are depicted by red arrows.
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Figure S25. AE, A(E+ZPE) and AG potential energy surfaces for the Phl oxidative
addition and subsequent Ph-NHC coupling for the IPr complexes. PBE1PBE/6-
311+G(d)&SDD level of theory.
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2a-IPr 2b-IPr
AE = 0; A(E+ZPE) = 0; AG = 0 kcal/mol AE =0.1; A(E+ZPE) = 0; AG = -0.1 kcal/mol
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Figure S26. Energies and optimized of 2-1Pr isomers.
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AE = 0; A(E+ZPE) = 0; AG = 0 kcal/mol AE = 11.8; A(E+ZPE) = 11.0; AG = 8.8 kcal/mol

Figure S27. Energies and optimized structures of 4-1Pr isomers.
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Figure S28. Optimized structures and selected bond distances (in angstroms) for 1-1Pr —
7-1Pr complexes. The atomic movements corresponding to the imaginary frequencies are
depicted by red arrows.
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ESI-MS spectra of starting Pd complexes and R-NHC products

Intens.
[%] 147.0913
100

80
60
40

204 148.0948 1490230
0 ﬂ I

Experimental
A =27 ppm

147.0917
100+

80
60+
40+

204 148.0950

Calculated
[CH, NJ]*

9 12

“ae a7 T T T 139

" 950

' 151 ' m'/Z

Figure S29. ESI-(+)MS spectrum of DMF solution of 8 with Phl diluted in CH3CN,
expanded to the [CoH11N,]" region at zero point of the reaction.
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Figure S30. ESI-(+)MS spectrum of DMF solution of 8 with Phl diluted in CH3CN,

expanded to the [Cy5H1sN,]" region after reaction time of 2 h.
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Figure S31. ESI-(+)MS spectrum of DMF solution of 9-1Pr with Phl diluted in CH;CN,
expanded to the [C,;H3;N,]" region at zero point of the reaction.
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Figure S32. ESI-(+)MS spectrum of DMF solution of 9-1Pr with Phl diluted in CH3;CN,
expanded to the [C33H41N,]" region after reaction time of 2 h.
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Figure S33. ESI-(+)MS spectrum of DMF solution of 9-SIPr with Phl diluted in

CH5CN, expanded to the [C3sH47N,Pd]" region at zero point of the reaction.
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Figure S34. ESI-(+)MS spectrum of DMF solution of 9-SIPr with Phl diluted in

CH5CN, expanded to the [C33Ha3N,]" region after reaction time of 2 h.
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Figure S35. ESI-(+)MS spectrum of DMF solution of 9-IMes with Phl diluted in
CH5CN, expanded to the [C3oH33N,Pd]" region at zero point of the reaction.
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Figure S36. ESI-(+)MS spectrum of DMF solution of 9-1Mes with Phl diluted in
CH5CN, expanded to the [C,;H,gN,]" region after reaction time of 2 h.

S34



Intens.
[%]
1004
80
60
40
20

529.1834
528.1843

527.1824

||

525.1825 ‘

i

Experimental
A=13ppm
531.1831

533.1848

530.1863

534.1871

=

100+
80/
60:
40]
20,

529.1841

528.1846

527.1835

525.1851 A l

530.1864

Calculated
[C,H..N_Pd]*

300 '35 "2

531.1834

533.1847

1 \ 534.'l'| 880

522 524

526 528

530

532 534 536 538 540 m/z

Figure S37. ESI-(+)MS spectrum of DMF solution of 9-SIMes with Phl diluted in
CH5CN, expanded to the [C3H3sN,Pd]" region at zero point of the reaction.
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Figure S38. ESI-(+)MS spectrum of DMF solution of 9-SIMes with Phl diluted in
CH5CN, expanded to the [C,;H3;:N,]" region after reaction time of 2 h.
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Figure S39. ESI-(+)MS spectrum of DMF solution of 9-PIPr with Phl diluted in
CH5CN, expanded to the [C3;H4gN,Pd]" region at zero point of the reaction.
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Figure S40. ESI-(+)MS spectrum of DMF solution of 9- PIPr with Phl diluted in
CH5CN, expanded to the [C34sH4sN,]" region after reaction time of 2 h.
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Figure S41. ESI-(+)MS spectrum of DMF solution of 9-DIPr with Phl diluted in

CH5CN, expanded to the [C3sHs,N,Pd]" region at zero point of the reaction.
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Figure S42. ESI-(+)MS spectrum of DMF solution of 9-DIPr with Phl diluted in

CH5CN, expanded to the [C3sH47N,]" region after reaction time of 2 h.
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Table S1. Experimental and calculated m/z values for cationic fragments of 7, 8, and 9.

Entry | Compound Detected form Formula | Calculated | Experimental A,
m/z m/z ppm
1 8 H-BIMe" CoH11N2 147.0917 147.0913 2.7
2 9-1Mes SIMes-Pd-(C3HsPh)* | CaoHasNyPd | 527.1685 527.1681 0.8
3 9-SIMes IMes-Pd-(C3;HsPh)” | CaoHasNoPd | 529.1841 529.1834 1.3
4 9-SIPr | SIPr-Pd-(C3HsPh)" | CasHarNoPd | 613.2782 | 613.2776 1.0
5 9-1Pr H—IPr* Ca7H37N2 389.2951 389.2960 2.3
6 9-PIPr PIPr-Pd-(CsHsPh)* | CarHagNoPd | 627.2939 627.2934 0.8
7 9-DIPr | DIPr-Pd-(C3HsPh)* | CssHsiNoPd | 641.3096 | 641.3089 11
1 7-BIMe Ph-BIMe" CisH15N2 223.1230 223.1230 0.1
2' 7-1Mes Ph—IMes* Co7H31N2 381.2325 381.2337 3.1
3 7-SIMes Ph—SIMes* Ca7H33N2 383.2482 383.2492 2.6
4 7-SIPr Ph-SIPr* Ca3zHgsN2 467.3421 467.3438 3.6
5 7-1Pr Ph—IPr* CazHa1N2 465.3264 465.3289 54
6' 7-PIPr Ph—PIPr" CasHysN2 481.3577 481.3583 1.2
T 7-DIPr Ph-DIPr* CssHg7N2 495.3734 495.3749 3.0
Table S2. Bonding in 4, 5-TS and 6. Interatomic distances (ID, in A), Wiberg bond
indexes (BI), atomic charge differences (Aq), and energies of NBOs (ENBO, eV).
pz?r(;rr]r?elz?e%s BIMe | IMe | SIMe | PIMe | DIMe | IMes | IPr
4
Pd-Cnpe | 1.933 1.936 1.933 | 1.957 | 1.940 1.962 2.002
ID Pd-Cpy, | 2.007 2.005 2.007 | 2.007 | 2.013 2.001 1.963
Pd-I 2.748 2.754 2.749 | 2.758 | 2.755 2.734 2.629
Pd-Cywe | 0.71 0.70 0.69 0.68 0.70 0.68 0.56
BI Pd-Cpy 0.66 0.66 0.65 0.65 0.64 0.64 0.76
Pd-1 0.63 0.62 0.62 0.62 0.62 0.64 0.8
Pd-Cnwe | -0.34 -0.28 -0.37 | -041 -0.43 -0.23 -0.29
Aq Pd-Cpp 0.22 0.24 0.23 0.20 0.22 0.31 0.01
Pd-I 0.55 0.58 0.56 0.52 0.54 0.61 0.34
Pd-Cnue | -0.47 -0.46 -0.46 | -0.43 -0.44 -0.46 -0.45
ENBO | Pd-Cp, | -0.31 -0.31 -0.30 | -0.30 -0.30 -0.32 -0.37
Pd-I -0.34 -0.34 -0.34 | -0.35 -0.35 -0.33 -0.36
5-TS
Pd-Cnpc | 1.926 1.936 1.925 | 1.957 | 1.937 1.973 1.961
Pd-Cpy, | 2.113 2.114 2.124 | 2.155 | 2.130 2.038 2.016
ID Pd-I 2.687 2.700 2.686 | 2.687 | 2.694 2.721 2.640
g::c 1.842 | 1.815 | 1.860 | 1.797 | 1.934 | 1.850 | 1.945
Pd-Cyye | 0.63 0.59 0.63 0.62 0.61 0.56 0.54
Bl Pd-Cpy 0.37 0.37 0.36 0.32 0.35 0.40 0.45
Pd-1 0.67 0.65 0.66 0.67 0.65 0.65 0.78
Cep- 0.67 0.69 0.66 0.71 0.63 0.68 0.62
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Pd-Cypc | -0.39 | -037 | -040 | -044 | -046 | -0.38 | -0.49
Pd-Cp, | 0.20 0.19 023 | 0.19 0.20 0.17 0.04
Aq Pd-1 0.50 0.53 052 | 0.48 0.50 0.54 0.52
gph' -060 | -057 | -063 | -063 | 065 | -055 | -0.54

NHC
Pd-Cypc | -0.37 | 004 | -035 | -034 | -035 | -0.37 | -0.39
ENBO F%N'g' 049 | 030 | -041 | 050 | -044 | -059 | -0.48

“\Ph
Pd-1 036 | -035 | -035 | -035 | -0.36 | -0.25 | -0.26

6

Pd-Cyuc | 2132 | 294 | 2158 | 2.217 | 2.233 | 2.709 | 2.746
Pd-Cp, | 2.209 | 2.201 | 2.207 | 2.203 | 2.182 | 2.148 | 2.135
ID Pd-1 2.680 | 2.697 | 2.690 | 2.695 | 2.694 | 2.630 | 2.637
gP“' 1.473 | 1.468 | 1.468 | 1.469 | 1.468 | 1.459 | 1.457

NHC
Pd-Cypc | 0.45 0.37 0.44 | 0.40 0.41 0.12 0.11
Pd-Cp, | 0.17 0.18 017 | 0.17 0.17 0.24 0.25
Bl Pd-1 0.67 0.65 0.65 | 0.64 0.65 0.74 0.73
Con- 1.07 1.07 1.08 1.10 1.01 1.10 1.10

Chnc
Pd-Cypc | -0.37 | -040 | -0.39 | -0.39 | -0.38 | -0.67 | -0.64
Pd-Cp, | 0.18 0.16 0.18 | 0.19 0.21 0.07 0.12
Aq Pd-1 0.51 0.53 053 | 0.54 0.55 0.35 0.40
Cen- 0.54 0.55 0.57 0.59 0.60 0.74 0.75

Cnhc
Pd-Cyuc | -0.29 | -0.30 | -0.31 | -0.30 | -0.30 - -
Pd-Cp, | -0.30 | -030 | -0.30 | -0.30 | -0.30 | -0.32 | -0.32
ENBO | Pd-I 036 | -023 | -024 | -024 | -024 | -0.27 | -0.30
Ce | 070 | -070 | -0.69 | 069 | 069 | -0.73 | -0.74

Chhe
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Count

Characterization of Pd nanoparticles with the use of TEM and EDS
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Figure S43. Statistical analysis of the Pd-containing NPs formed in the reaction of 9 with
iodobenzene. Histograms of particle diameter distribution (red) and corresponding normal
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distribution curves (blue). Average particle sizes and standard deviations are given under each
graph.
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Figure S44. EDX spectrum of TEM grid containing particles obtained from 9-SIPr complex.
Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.

;

Fiure 45. ED spectr 0 TE grid cotaiing artiles btained rom 9-PPr omex. -
Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.
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Figure S46. EDX spectrum of TEM grid containing particles obtained from 9-DIPr complex.
Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.

Comment: Assignment of the signals in EDX spectra

Element(s) Source
C,0 Carbon support on TEM grid
Cu, O, Sn TEM grid, specimen holder
Al, O Specimen holder
Si Silicon drift detector (EDX spectrometer)
Pd, | Particles: metallic Pd, Pdl (or azolium salt for I)
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