Electronic Supplementary Information

In situ transformations of Pd/NHC complexes with N-heterocyclic carbene ligands of different nature into colloidal Pd nanoparticles

Alexander Yu. Kostyukovich,^a Andrey M. Tsedilin,^a Ekaterina D. Sushchenko,^a Dmitry B. Eremin,^a Alexey S. Kashin,^a Maxim A. Topchiy,^{b,c} Andrey F. Asachenko,^{b,c} Mikhail S. Nechaev^{b,c} and Valentine P. Ananikov^{a,b*}

^a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia. E-mail: val@ioc.ac.ru

^b M. V. Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russia

^c A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, 119991, Russia

Content

Figure S1. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the BIMe complexes
Figure S2. Energies and optimized of 2-BIMe isomers
Figure S3. Energies and optimized structures of 4-BIMe isomers
Figure S4. Optimized structures and selected bond distances (in angstroms) for 1-BIMe – 7-BIMe complexes
Figure S5. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the IMe complexes
Figure S6. Energies and optimized of 2-IMe isomers9
Figure S7. Energies and optimized structures of 4-IMe isomers
Figure S8. Optimized structures and selected bond distances (in angstroms) for 1-IMe – 7-IMe complexes
Figure S9. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the SIMe complexes
Figure S10. Energies and optimized of 2-SIMe isomers
Figure S11. Energies and optimized structures of 4-SIMe isomers
Figure S12. Optimized structures and selected bond distances (in angstroms) for 1-SIMe – 7-SIMe complexes
Figure S13. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the PIMe complexes
Figure S14. Energies and optimized of 2-PIMe isomers

Figure S15. Energies and optimized structures of 4-PIMe isomers	18
Figure S16. Optimized structures and selected bond distances (in angstroms) for 1-PI – 7-PIMe complexes	Me 19
Figure S17. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the DIMe complexes	20
Figure S18. Energies and optimized of 2-DIMe isomers	21
Figure S19. Energies and optimized structures of 4-DIMe isomers	22
Figure S20. Optimized structures and selected bond distances (in angstroms) for 1-DI – 7-DIMe complexes	Me 23
Figure S21. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the IMes complexes	24
Figure S22. Energies and optimized of 2-IMes isomers	25
Figure S23. Energies and optimized structures of 4-IMes isomers	26
Figure S24. Optimized structures and selected bond distances (in angstroms) for 1-IM – 7-IMes complexes	[es 27
Figure S25. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the IPr complexes	28
Figure S26. Energies and optimized of 2-IPr isomers	29
Figure S27. Energies and optimized structures of 4-IPr isomers	29
Figure S28. Optimized structures and selected bond distances (in angstroms) for 1-IPr 7-IPr complexes	r – 30
Figure S29. ESI-(+)MS spectrum of DMF solution of 8 with PhI diluted in CH ₃ CN, expanded to the $[C_9H_{11}N_2]^+$ region at zero point of the reaction	31
Figure S30. ESI-(+)MS spectrum of DMF solution of 8 with PhI diluted in CH ₃ CN, expanded to the $[C_{15}H_{15}N_2]^+$ region after reaction time of 2 h	31
Figure S31. ESI-(+)MS spectrum of DMF solution of 9-IPr with PhI diluted in CH ₃ C expanded to the $[C_{27}H_{37}N_2]^+$ region at zero point of the reaction	N, 32
Figure S32. ESI-(+)MS spectrum of DMF solution of 9-IPr with PhI diluted in CH ₃ C expanded to the $[C_{33}H_{41}N_2]^+$ region after reaction time of 2 h	N, 32
Figure S33. ESI-(+)MS spectrum of DMF solution of 9-SIPr with PhI diluted in CH ₃ 0 expanded to the $[C_{36}H_{47}N_2Pd]^+$ region at zero point of the reaction	CN, .33
Figure S34. ESI-(+)MS spectrum of DMF solution of 9-SIPr with PhI diluted in CH ₃ 0 expanded to the $[C_{33}H_{43}N_2]^+$ region after reaction time of 2 h	CN, 33
Figure S35. ESI-(+)MS spectrum of DMF solution of 9-IMes with PhI diluted in CH ₃ expanded to the $[C_{30}H_{33}N_2Pd]^+$ region at zero point of the reaction	CN, 34
Figure S36. ESI-(+)MS spectrum of DMF solution of 9-IMes with PhI diluted in CH ₃ expanded to the $[C_{27}H_{29}N_2]^+$ region after reaction time of 2 h	CN, 34

Figure S37. ESI-(+)MS spectrum of DMF solution of **9-SIMes** with PhI diluted in Figure S38. ESI-(+)MS spectrum of DMF solution of 9-SIMes with PhI diluted in Figure S39. ESI-(+)MS spectrum of DMF solution of **9-PIPr** with PhI diluted in CH₃CN, Figure S40. ESI-(+)MS spectrum of DMF solution of **9- PIPr** with PhI diluted in Figure S41. ESI-(+)MS spectrum of DMF solution of **9-DIPr** with PhI diluted in CH₃CN, Figure S42 ESI-(+)MS spectrum of DMF solution of **9-DIPr** with PhI diluted in CH₃CN, Table S1. Experimental and calculated m/z values for cationic fragments of 7, 8, and 9 38 Table S2. Bonding in 4, 5-TS and 6. Interatomic distances (ID, in Å), Wiberg bond Characterization of Pd nanoparticles with the use of TEM and EDS 40

BIMe complexes

Figure S1. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **BIMe** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

2a-BIMe ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

2b-BIMe ΔE = 4.2; Δ(E+ZPE) = 3.9; ΔG = 2.7 kcal/mol

 $\Delta E = 1.8$; $\Delta (E+ZPE) = 1.4$; $\Delta G = -0.7$ kcal/mol

2d-BIMe ΔE = 1.2; Δ(E+ZPE) = 1.3; ΔG = 0.7 kcal/mol

Figure S2. Energies and optimized structures of 2-BIMe isomers.

4a-BIMe ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

4b-BIMe ΔE = 4.0; Δ(E+ZPE) = 4.0; ΔG = 4.2 kcal/mol

4c-BIMe ΔE = 14.8; Δ(E+ZPE) = 14.5; ΔG = 14.8 kcal/mol

Figure S3. Energies and optimized structures of 4-BIMe isomers.

7-BIMe

Figure S4. Optimized structures and selected bond distances (in angstroms) for **1-BIMe** – **7-BIMe** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

IMe complexes

Figure S5. ΔE , $\Delta(E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **IMe** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

2a-IMe ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

2c-IMe ∆E = 0.9; ∆(E+ZPE) = 0.6; ∆G = -1.4 kcal/mol

ΔE = 1.8; Δ(E+ZPE) = 2.2; ΔG = -1.7 kcal/mol

Figure S6. Energies and optimized structures of 2-IMe isomers.

4a-IMe $\Delta E = 0; \Delta (E+ZPE) = 0; \Delta G = 0 \text{ kcal/mol}$

 $\Delta E = 4.0; \Delta (E+ZPE) = 4.1; \Delta G = 4.8 \text{ kcal/mol}$

∆E = 14.3; ∆(E+ZPE) = 14.0; ∆G = 13.8 kcal/mol

Figure S7. Energies and optimized structures of 4-IMe isomers.

1-IMe

4a-IMe

Figure S8. Optimized structures and selected bond distances (in angstroms) for **1-IMe** – **7-IMe** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

SIMe complexes

Figure S9. ΔE , $\Delta (E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **SIMe** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

 $\Delta E = 0$; $\Delta (E+ZPE) = 0$; $\Delta G = 0$ kcal/mol

 $\Delta E = -0.4$; $\Delta (E+ZPE) = -0.7$; $\Delta G = -1.0$ kcal/mol

2d-SIMe

 $\Delta \mathsf{E} = 1.6; \ \Delta (\mathsf{E+ZPE}) = 1.4; \ \Delta \mathsf{G} = -0.2 \ \mathsf{kcal/mol} \qquad \Delta \mathsf{E} = 2.5; \ \Delta (\mathsf{E+ZPE}) = 2.7; \ \Delta \mathsf{G} = 2.5 \ \mathsf{kcal/mol}$

Figure S10. Energies and optimized structures of 2-SIMe isomers.

4b-SIMe ΔE = 5.0; Δ(E+ZPE) = 4.9; ΔG = 5.4 kcal/mol

 $\Delta E = 15.7$; $\Delta (E+ZPE) = 15.2$; $\Delta G = 14.7$ kcal/mol

Figure S11. Energies and optimized structures of 4-SIMe isomers.

1-SIMe

5-TS-SIMe

2b-SIMe

4a-SIMe

6-SIMe

Figure S12. Optimized structures and selected bond distances (in angstroms) for **1-SIMe** – **7-SIMe** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

PIMe complexes

Figure S13. ΔE , $\Delta(E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **PIMe** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

Figure S14. Energies and optimized structures of 2-PIMe isomers.

4a-PIMe ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

4b-PIMe ΔE = 4.9; Δ(E+ZPE) = 4.7; ΔG = 4.9 kcal/mol

 $\Delta E = 15.0; \Delta (E+ZPE) = 14.4; \Delta G = 13.4 \text{ kcal/mol}$

Figure S15. Energies and optimized structures of 4-PIMe isomers.

Figure S16. Optimized structures and selected bond distances (in angstroms) for **1-PIMe** – **7-PIMe** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

2.19

52.43 2.0

,2.19

2b-PIMe

2.01

4a-PIMe

2.18

6-PIMe

2.37

2.20

2.22

2.70

2.16

Figure S17. ΔE , $\Delta(E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **DIMe** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

 $\Delta E = 0; \Delta (E+ZPE) = 0; \Delta G = 0 \text{ kcal/mol}$

 $\Delta E = 0$; $\Delta (E+ZPE) = 0$; $\Delta G = -0.5$ kcal/mol

 $\Delta E = -0.3$; $\Delta (E+ZPE) = -0.5$; $\Delta G = -2.0$ kcal/mol $\Delta E = 4.2$; $\Delta (E+ZPE) = 4.0$; $\Delta G = 2.4$ kcal/mol

Figure S18. Energies and optimized structures of 2-DIMe isomers.

4a-DIMe $\Delta E = 0$; Δ (E+ZPE) = 0; $\Delta G = 0$ kcal/mol

 $\label{eq:ab-DIMe} \Delta \mathsf{E} = 6.1; \ \Delta (\mathsf{E}{+}\mathsf{ZPE}) = 6.0; \ \Delta \mathsf{G} = 6.4 \ \mathsf{kcal/mol}$

 $\Delta E = 16.6$; $\Delta (E+ZPE) = 16.0$; $\Delta G = 14.8$ kcal/mol **Figure S19.** Energies and optimized structures of **4-DIMe** isomers.

7-DIMe

Figure S20. Optimized structures and selected bond distances (in angstroms) for **1-DIMe** – **7-DIMe** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

Figure S21. ΔE , $\Delta(E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **IMes** complexes (transition state **3-TS** not found). PBE1PBE/6-311+G(d)&SDD level of theory.

2a-IMes ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

Figure S22. Energies and optimized structures of 2-IMes isomers.

4a-IMes ΔE = 0; Δ(E+ZPE) = 0; ΔG = 0 kcal/mol

4b-IMes ∆E = -4.1; ∆(E+ZPE) = -3.8; ∆G = -0.8 kcal/mol

4c-IMes

 ΔE = 7.0; Δ (E+ZPE) = 6.6; ΔG = 7.2 kcal/mol

Figure S23. Energies and optimized structures of 4-IMes isomers.

Figure S24. Optimized structures and selected bond distances (in angstroms) for **1-IMes** – **7-IMes** complexes (**3-TS** structure not found). The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

IPr complexes

Figure S25. ΔE , $\Delta(E+ZPE)$ and ΔG potential energy surfaces for the PhI oxidative addition and subsequent Ph-NHC coupling for the **IPr** complexes. PBE1PBE/6-311+G(d)&SDD level of theory.

2b-IPr ΔE = 0.1; Δ(E+ZPE) = 0; ΔG = -0.1 kcal/mol

2d-IPr

 $\Delta E = -1.8$; $\Delta (E+ZPE) = -2.0$; $\Delta G = -2.5$ kcal/mol $\Delta E = 6.2$; $\Delta (E+ZPE) = 6.3$; $\Delta G = 5.3$ kcal/mol

Figure S26. Energies and optimized of 2-IPr isomers.

2c-IPr

4b-IPr
4c-IPr

 $\Delta E = 0; \Delta (E+ZPE) = 0; \Delta G = 0 \text{ kcal/mol}$ $\Delta E = 11.8; \Delta (E+ZPE) = 11.0; \Delta G = 8.8 \text{ kcal/mol}$

Figure S28. Optimized structures and selected bond distances (in angstroms) for **1-IPr** – **7-IPr** complexes. The atomic movements corresponding to the imaginary frequencies are depicted by red arrows.

Figure S29. ESI-(+)MS spectrum of DMF solution of **8** with PhI diluted in CH₃CN, expanded to the $[C_9H_{11}N_2]^+$ region at zero point of the reaction.

Figure S30. ESI-(+)MS spectrum of DMF solution of **8** with PhI diluted in CH₃CN, expanded to the $[C_{15}H_{15}N_2]^+$ region after reaction time of 2 h.

Figure S31. ESI-(+)MS spectrum of DMF solution of **9-IPr** with PhI diluted in CH₃CN, expanded to the $[C_{27}H_{37}N_2]^+$ region at zero point of the reaction.

Figure S32. ESI-(+)MS spectrum of DMF solution of **9-IPr** with PhI diluted in CH₃CN, expanded to the $[C_{33}H_{41}N_2]^+$ region after reaction time of 2 h.

Figure S33. ESI-(+)MS spectrum of DMF solution of **9-SIPr** with PhI diluted in CH₃CN, expanded to the $[C_{36}H_{47}N_2Pd]^+$ region at zero point of the reaction.

Figure S34. ESI-(+)MS spectrum of DMF solution of **9-SIPr** with PhI diluted in CH₃CN, expanded to the $[C_{33}H_{43}N_2]^+$ region after reaction time of 2 h.

Figure S35. ESI-(+)MS spectrum of DMF solution of **9-IMes** with PhI diluted in CH₃CN, expanded to the $[C_{30}H_{33}N_2Pd]^+$ region at zero point of the reaction.

Figure S36. ESI-(+)MS spectrum of DMF solution of **9-IMes** with PhI diluted in CH₃CN, expanded to the $[C_{27}H_{29}N_2]^+$ region after reaction time of 2 h.

Figure S37. ESI-(+)MS spectrum of DMF solution of **9-SIMes** with PhI diluted in CH₃CN, expanded to the $[C_{30}H_{35}N_2Pd]^+$ region at zero point of the reaction.

Figure S38. ESI-(+)MS spectrum of DMF solution of **9-SIMes** with PhI diluted in CH₃CN, expanded to the $[C_{27}H_{31}N_2]^+$ region after reaction time of 2 h.

Figure S39. ESI-(+)MS spectrum of DMF solution of **9-PIPr** with PhI diluted in CH₃CN, expanded to the $[C_{37}H_{49}N_2Pd]^+$ region at zero point of the reaction.

Figure S40. ESI-(+)MS spectrum of DMF solution of **9- PIPr** with PhI diluted in CH₃CN, expanded to the $[C_{34}H_{45}N_2]^+$ region after reaction time of 2 h.

Figure S41. ESI-(+)MS spectrum of DMF solution of **9-DIPr** with PhI diluted in CH₃CN, expanded to the $[C_{38}H_{51}N_2Pd]^+$ region at zero point of the reaction.

Figure S42. ESI-(+)MS spectrum of DMF solution of **9-DIPr** with PhI diluted in CH₃CN, expanded to the $[C_{35}H_{47}N_2]^+$ region after reaction time of 2 h.

Entry	Compound	Detected form	Formula	Calculated	Experimental	Δ,
				<i>m/z</i> ,	m/z.	ppm
1	8	H–BIMe ⁺	$C_9H_{11}N_2$	147.0917	147.0913	2.7
2	9-IMes	9-IMes SIMes-Pd- $(C_3H_5Ph)^+$		527.1685	527.1681	0.8
3	9-SIMes IMes-Pd- $(C_3H_5Ph)^+$		$C_{30}H_{35}N_2Pd$	529.1841	529.1834	1.3
4	9-SIPr	SIPr-Pd- $(C_3H_5Ph)^+$	$C_{36}H_{47}N_2Pd$	613.2782	613.2776	1.0
5	9-IPr	$H-IPr^+$	$C_{27}H_{37}N_2$	389.2951	389.2960	2.3
6	9-PIPr	$PIPr-Pd-(C_3H_5Ph)^+$	$C_{37}H_{49}N_2Pd$	627.2939	627.2934	0.8
7	9-DIPr	$DIPr-Pd-(C_3H_5Ph)^+$	$C_{38}H_{51}N_2Pd$	641.3096	641.3089	1.1
1'	7-BIMe	Ph-BIMe ⁺	$C_{15}H_{15}N_2$	223.1230	223.1230	0.1
2'	7-IMes	Ph–IMes ⁺	$C_{27}H_{31}N_2$	381.2325	381.2337	3.1
3'	7-SIMes	Ph–SIMes ⁺	$C_{27}H_{33}N_2$	383.2482	383.2492	2.6
4'	7-SIPr	$Ph-SIPr^+$	$C_{33}H_{43}N_2$	467.3421	467.3438	3.6
5'	7-IPr	Ph–IPr ⁺	$C_{33}H_{41}N_2$	465.3264	465.3289	5.4
6'	7-PIPr	Ph–PIPr ⁺	$C_{34}H_{45}N_2$	481.3577	481.3583	1.2
7'	7-DIPr	Ph–DIPr ⁺	$C_{35}H_{47}N_2$	495.3734	495.3749	3.0

Table S1. Experimental and calculated m/z values for cationic fragments of 7, 8, and 9.

Table S2. Bonding in 4, 5-TS and 6. Interatomic distances (ID, in Å), Wiberg bond

Boi	nding	RIMe	IMe	SIMe	PIMe	DIMe	IMes	IPr
para	meters	DIM	INIC	SINC	I IIVIC	DIM	INICS	11 1
				4				
ID	Pd-C _{NHC}	1.933	1.936	1.933	1.957	1.940	1.962	2.002
	Pd-C _{Ph}	2.007	2.005	2.007	2.007	2.013	2.001	1.963
	Pd-I	2.748	2.754	2.749	2.758	2.755	2.734	2.629
	Pd-C _{NHC}	0.71	0.70	0.69	0.68	0.70	0.68	0.56
BI	Pd-C _{Ph}	0.66	0.66	0.65	0.65	0.64	0.64	0.76
	Pd-I	0.63	0.62	0.62	0.62	0.62	0.64	0.8
	Pd-C _{NHC}	-0.34	-0.28	-0.37	-0.41	-0.43	-0.23	-0.29
Δq	$Pd-C_{Ph}$	0.22	0.24	0.23	0.20	0.22	0.31	0.01
	Pd-I	0.55	0.58	0.56	0.52	0.54	0.61	0.34
	$Pd-C_{NHC}$	-0.47	-0.46	-0.46	-0.43	-0.44	-0.46	-0.45
ENBO	Pd-C _{Ph}	-0.31	-0.31	-0.30	-0.30	-0.30	-0.32	-0.37
	Pd-I	-0.34	-0.34	-0.34	-0.35	-0.35	-0.33	-0.36
5-TS								
	Pd-C _{NHC}	1.926	1.936	1.925	1.957	1.937	1.973	1.961
	Pd-C _{Ph}	2.113	2.114	2.124	2.155	2.130	2.038	2.016
ID	Pd-I	2.687	2.700	2.686	2.687	2.694	2.721	2.640
	C _{Ph} - C _{NHC}	1.842	1.815	1.860	1.797	1.934	1.850	1.945
DI	Pd-C _{NHC}	0.63	0.59	0.63	0.62	0.61	0.56	0.54
	Pd-C _{Ph}	0.37	0.37	0.36	0.32	0.35	0.40	0.45
DI	Pd-I	0.67	0.65	0.66	0.67	0.65	0.65	0.78
	C _{Ph} -	0.67	0.69	0.66	0.71	0.63	0.68	0.62

indexes (BI), atomic charge differences (Δq), and energies of NBOs (ENBO, eV).

	C _{NHC}							
Δq	Pd-C _{NHC}	-0.39	-0.37	-0.40	-0.44	-0.46	-0.38	-0.49
	Pd-C _{Ph}	0.20	0.19	0.23	0.19	0.20	0.17	0.04
	Pd-I	0.50	0.53	0.52	0.48	0.50	0.54	0.52
	C _{Ph} - C _{NHC}	-0.60	-0.57	-0.63	-0.63	0.65	-0.55	-0.54
	Pd-C _{NHC}	-0.37	-0.04	-0.35	-0.34	-0.35	-0.37	-0.39
ENBO	C _{NHC} - Pd-C _{Ph}	-0.49	-0.30	-0.41	-0.50	-0.44	-0.59	-0.48
	Pd-I	-0.36	-0.35	-0.35	-0.35	-0.36	-0.25	-0.26
				6				
	Pd-C _{NHC}	2.132	2.94	2.158	2.217	2.233	2.709	2.746
	Pd-C _{Ph}	2.209	2.201	2.207	2.203	2.182	2.148	2.135
ID	Pd-I	2.680	2.697	2.690	2.695	2.694	2.630	2.637
	C _{Ph} - C _{NHC}	1.473	1.468	1.468	1.469	1.468	1.459	1.457
	$Pd-C_{NHC}$	0.45	0.37	0.44	0.40	0.41	0.12	0.11
	Pd-C _{Ph}	0.17	0.18	0.17	0.17	0.17	0.24	0.25
BI	Pd-I	0.67	0.65	0.65	0.64	0.65	0.74	0.73
	C _{Ph} - C _{NHC}	1.07	1.07	1.08	1.10	1.01	1.10	1.10
	Pd-C _{NHC}	-0.37	-0.40	-0.39	-0.39	-0.38	-0.67	-0.64
	Pd-C _{Ph}	0.18	0.16	0.18	0.19	0.21	0.07	0.12
Δq	Pd-I	0.51	0.53	0.53	0.54	0.55	0.35	0.40
	C _{Ph} - C _{NHC}	0.54	0.55	0.57	0.59	0.60	0.74	0.75
	$Pd-C_{NHC}$	-0.29	-0.30	-0.31	-0.30	-0.30	-	-
	Pd-C _{Ph}	-0.30	-0.30	-0.30	-0.30	-0.30	-0.32	-0.32
ENBO	Pd-I	-0.36	-0.23	-0.24	-0.24	-0.24	-0.27	-0.30
	C _{Ph} - C _{NHC}	-0.70	-0.70	-0.69	0.69	-0.69	-0.73	-0.74

Figure S43. Statistical analysis of the Pd-containing NPs formed in the reaction of **9** with iodobenzene. Histograms of particle diameter distribution (red) and corresponding normal distribution curves (blue). Average particle sizes and standard deviations are given under each graph.

Figure S44. EDX spectrum of TEM grid containing particles obtained from **9-SIPr** complex. Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.

Figure S45. EDX spectrum of TEM grid containing particles obtained from **9-PIPr** complex. Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.

Figure S46. EDX spectrum of TEM grid containing particles obtained from **9-DIPr** complex. Spectrum was scaled and smoothed for more clear presentation of low-intensity signals.

<u>Comment:</u> Assignment of the signals in EDX spectra

Element(s)	Source
С, О	Carbon support on TEM grid
Cu, O, Sn	TEM grid, specimen holder
Al, O	Specimen holder
Si	Silicon drift detector (EDX spectrometer)
Pd, I	Particles: metallic Pd, PdI (or azolium salt for I)