Supplementary Information

Non-Layered Ti₂N Synthesized by Plasma Process for the Anodes of Lithium Ion Batteries

Hsu-Sheng Tsai,^{1†*} Chih-Hao Hsu,^{2†} Chi-Chong Chi,² Yi-Chung Wang,² Fan-Wei Liu,² Shin-Yi Tang,² Cho-Jen Tsai,² Hao Ouyang,² Yu-Lun Chueh,² Jenq-Horng Liang^{3*}

¹ Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
² Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.
³ Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

*Correspondence to: h.tsai@hzdr.de and jhliang@ess.nthu.edu.tw

Estimation of Work Functions

- φ_d : The average difference of work function between Au and the probe.
- φ_{Au} : The work function of Au.
- φ_p : The work function of the probe.

 φ_m : The average difference of work function between Ti₂N and the probe.

 φ_{Ti_2N} : The work function of Ti₂N

$$\varphi_d = \varphi_p - \varphi_{Au} \tag{S1}$$

$$\varphi_m = \varphi_p - \varphi_{Ti_2N} \tag{S2}$$

The Au is first analyzed by KPFM to obtain the value of φ_d , thus the φ_d can be derived by using Eq. S1 since the φ_{Au} is already known. Then the Ti₂N samples can be analyzed to acquire the values of φ_m . Finally, the values of φ_{Ti_2N} can be derived by using Eq. S2.

Fig. S1 (a) The cross-sectional TEM image of the ε -Ti₂N obtained by the process with the plasma exposure time of 45 minutes. (b) The cross-sectional TEM image of the ε -Ti₂N obtained by the process with the plasma exposure time of 60 minutes.