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Fig. S1 (A-B) SEM images at different magnifications of bare NF.
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Fig. S2 (A-C) SEM images at different magnifications of the electrodeposited 
CuNi/NF substrate with high porosity, (D) SEM image and (E) EDX mapping 
images of the CuNi alloy nanodentrite.
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Fig. S3 SEM images of electrodeposited Ni/NF at different magnifications.
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Fig. S4 (A-C) SEM images and (D) XRD patterns of Ni3S2/Ni/NF. XPS spectra in (E) 
Ni 2p and (F) S 2p regions of Ni3S2/Ni/NF. Compared with CuS-Ni3S2/CuNi/NF, Ni 
region shows an additional peak at 852.2 eV, belonging to Ni3S2 as reported.1, 2 
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Fig. S5 EDX mapping images of CuS-Ni3S2/CuNi/NF electrode skeleton.
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Fig. S6 CV curves of different catalytic electrodes synthesized by employing the 
different concentration of thiourea.
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Fig. S7 SEM images of (A-C) CuS-Ni3S2/CuNi/NF-0.02 M and (D-F) CuS-
Ni3S2/CuNi/NF-0.005 M.
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Fig. S8 CV curves of CuS-Ni3S2/CuNi/NF and IrO2 decorated NF (abbreviated to IrO2) 
with the same loading mass (16.7 mg cm-2), and IrO2 with the loading mass of 5 mg 
cm-2. 
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Fig. S9 CV curves measured in non-faradaic potential from 0.574 V to 0.674 V at 
different scan rates: 30, 50, 70, 90, 110, 130 and 150 mV s -1 for (A) CuS-
Ni3S2/CuNi/NF and (B) Ni3S2/Ni/NF electrodes.
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Fig. S10 CV curve of CuS-Ni3S2/CuNi/NF in 1 M phosphate buffered saline (PBS) 
solution (pH = 7.0) at a scan rate of 50 mV s-1.
Calculation of active sites:

CV measurements were measured at 50 mV s-1 in 1 M solution PBS (pH = 7.0). 
Later, the absolute components of the voltammetric charges (cathodic and anodic) 
reported during one single blank measurement were added. Assuming a one electron 
redox process, this absolute charge was divided by two. The value was then divided 
by the Faraday constant to get the number of active sites (N) of catalysts.
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Q: the CV charge capacity obtained by integrating the CV curves.
F: Faraday constant (96485 C/mol).
I: current density (A)
V: voltage (V)

: scan rate (V s-1)υ
TOF calculation:
  When the number of active sites is known, the turnover frequencies (s-1) were 
calculated via the following equation:
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I: Current (A) during the LSV measurement in 1.0 M KOH.
F: Faraday constant (96485 C/mol).
N: Number of active sites (mol).
The factor 1/4 arrives by taking into account that four electrons are required to form 
one oxygen molecule.
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Fig. S11 Calculated density of states (DOS) for CuS-Ni3S2 and pristine Ni3S2. The 
Fermi level is set at 0 eV.
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Fig. S12 (A-B) SEM at different magnifications, EDX spectra of CuS-Ni3S2/CuNi/NF 
(C) before and (D) after the OER durability test at 100 mA cm-2 for 15 h and XPS 
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spectra in (E) Cu, (F) Ni, (G) O and (H) S regions of CuS-Ni3S2/CuNi/NF after the 
OER durability test at 100 mA cm-2 for 15 h.

No O peak could be observed in the EDX spectrum of CuS-Ni3S2/CuNi/NF 

before the 15 h durability test (Fig. S12C), while a strong O peak appeared after the 

15 h durability test (Fig. S12D), indicating that CuS-Ni3S2/CuNi/NF was oxidized 

after the vigorous and long OER process. Furthermore, XPS spectra were utilized to 

further investigate the surface chemical composition after the 15 h duration test. In 

Fig. S12F, it is found that the spin–orbit splitting energy between the two Ni 2p peaks 

is about 17.6 eV, indicating the formation of Ni(OH)2.3 The O 1s spectrum in Fig. 

S12G shows a peak at 531.02 eV which can be attributed to the O atoms in OH-,4 

further demonstrating the formation of Ni(OH)2 after OER durability test. Therefore, 

Ni3S2 in CuS-Ni3S2/CuNi/NF was oxidized to Ni(OH)2 during OER process.
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Table S1. CuNi/NF with several Ni-based and Cu-based OER catalysts reported 
recently.
Catalyst Electrolyte Current

(mA cm-2)
Overpotential
(η, mV)

Reference

CuS-Ni3S2/CuNi/NF 1.0 M KOH 100
200
500
1000

337
379
444
509 

this work

Ni3S2/Au/Si 1.0 M KOH 10 400 5

CdS/Ni3S2/PNFI 1.0 M KOH 10
100

110
~530

6

MoOx/Ni3S2/NF 1.0 M KOH 10
100
200
500

136
310
~360
~520

7

NF-Ni3S2/NF 1.0 M KOH 20
100
200

230
~340
~410

8

NixCo3−xS4/Ni3S2/NF 1.0 M KOH 10
100

300
570

9

Ni3S2@G@Co9S8 1.0 M KOH 10
100

210
~350

10

Co3O4@Ni3S2/NF 1.0 M KOH 20
100

260
~500

1

NiCoS/Ti3C2Tx 1.0 M KOH 10 365 11

NiCoP
NiMnP
NiMoP

1.0 M KOH 20
20
20

410
450
430

12

Ni/Ni3C 0.1 M KOH 10 350 13

Ni11(HPO3)8(OH)6/N
F

1.0 M KOH 10
100

232
362

14

Ni(OH)2/Ni3S2 1.0 M KOH 20
100

270
400

15

CuO@Ni–PNA/CFII 1.0 M KOH 30
100
200

275
~360
~380

16

Co-CuO NA/CFIII 1.0 M KOH 50
100

299
330

17

I: PNF: plasma-treated nickel foam
II, III: CF: copper foam
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