CuS-Ni₃S₂ in-situ grown from three-dimensional porous bimetallic foam for efficient oxygen evolution

Nan Zhang*, Ying Gao, Yahui Mei, Jian Liu, Weiyu Song*, Ying Yu*

State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, 102249, China

*Corresponding authors:

*E-mail: zhangnan@cup.edu.cn (Nan Zhang)

*E-mail: songwy@cup.edu.cn (Weiyu Song)

*E-mail: yuying@cup.edu.cn (Ying Yu)

Fig. S1 (A-B) SEM images at different magnifications of bare NF.

Fig. S2 (A-C) SEM images at different magnifications of the electrodeposited CuNi/NF substrate with high porosity, (D) SEM image and (E) EDX mapping images of the CuNi alloy nanodentrite.

Fig. S3 SEM images of electrodeposited Ni/NF at different magnifications.

Fig. S4 (A-C) SEM images and (D) XRD patterns of $Ni_3S_2/Ni/NF$. XPS spectra in (E) Ni 2p and (F) S 2p regions of $Ni_3S_2/Ni/NF$. Compared with CuS- $Ni_3S_2/CuNi/NF$, Ni region shows an additional peak at 852.2 eV, belonging to Ni_3S_2 as reported.^{1, 2}

Fig. S5 EDX mapping images of CuS-Ni $_3S_2$ /CuNi/NF electrode skeleton.

Fig. S6 CV curves of different catalytic electrodes synthesized by employing the different concentration of thiourea.

Fig. S7 SEM images of (A-C) CuS-Ni₃S₂/CuNi/NF-0.02 M and (D-F) CuS-Ni₃S₂/CuNi/NF-0.005 M.

Fig. S8 CV curves of CuS-Ni₃S₂/CuNi/NF and IrO₂ decorated NF (abbreviated to IrO₂) with the same loading mass (16.7 mg cm⁻²), and IrO₂ with the loading mass of 5 mg cm⁻².

Fig. S9 CV curves measured in non-faradaic potential from 0.574 V to 0.674 V at different scan rates: 30, 50, 70, 90, 110, 130 and 150 mV s $^{-1}$ for (A) CuS-Ni₃S₂/CuNi/NF and (B) Ni₃S₂/Ni/NF electrodes.

Fig. S10 CV curve of CuS-Ni₃S₂/CuNi/NF in 1 M phosphate buffered saline (PBS) solution (pH = 7.0) at a scan rate of 50 mV s⁻¹.

Calculation of active sites:

CV measurements were measured at 50 mV s⁻¹ in 1 M solution PBS (pH = 7.0). Later, the absolute components of the voltammetric charges (cathodic and anodic) reported during one single blank measurement were added. Assuming a one electron redox process, this absolute charge was divided by two. The value was then divided by the Faraday constant to get the number of active sites (N) of catalysts.

$$N = \frac{Q}{2F} = \frac{\int IV/v}{2F}$$

Q: the CV charge capacity obtained by integrating the CV curves.

F: Faraday constant (96485 C/mol).

I: current density (A)

V: voltage (V)

v: scan rate (V s⁻¹)

TOF calculation:

When the number of active sites is known, the turnover frequencies (s^{-1}) were calculated via the following equation:

$$\text{TOF} = \frac{\text{I}}{\text{FN}} \frac{1}{4}$$

I: Current (A) during the LSV measurement in 1.0 M KOH.

F: Faraday constant (96485 C/mol).

N: Number of active sites (mol).

The factor 1/4 arrives by taking into account that four electrons are required to form one oxygen molecule.

Fig. S11 Calculated density of states (DOS) for CuS-Ni₃S₂ and pristine Ni₃S₂. The Fermi level is set at 0 eV.

Fig. S12 (A-B) SEM at different magnifications, EDX spectra of CuS-Ni₃S₂/CuNi/NF (C) before and (D) after the OER durability test at 100 mA cm⁻² for 15 h and XPS

spectra in (E) Cu, (F) Ni, (G) O and (H) S regions of CuS-Ni₃S₂/CuNi/NF after the OER durability test at 100 mA cm⁻² for 15 h.

No O peak could be observed in the EDX spectrum of CuS-Ni₃S₂/CuNi/NF before the 15 h durability test (Fig. S12C), while a strong O peak appeared after the 15 h durability test (Fig. S12D), indicating that CuS-Ni₃S₂/CuNi/NF was oxidized after the vigorous and long OER process. Furthermore, XPS spectra were utilized to further investigate the surface chemical composition after the 15 h duration test. In Fig. S12F, it is found that the spin–orbit splitting energy between the two Ni 2p peaks is about 17.6 eV, indicating the formation of Ni(OH)₂.³ The O 1s spectrum in Fig. S12G shows a peak at 531.02 eV which can be attributed to the O atoms in OH⁴, further demonstrating the formation of Ni(OH)₂ after OER durability test. Therefore, Ni₃S₂ in CuS-Ni₃S₂/CuNi/NF was oxidized to Ni(OH)₂ during OER process.

Catalyst	Electrolyte	Current	Overpotential	Reference
		(mA cm ⁻²)	(η, mV)	
CuS-Ni ₃ S ₂ /CuNi/NF	1.0 M KOH	100	337	this work
		200	379	
		500	444	
		1000	509	
Ni ₃ S ₂ /Au/Si	1.0 M KOH	10	400	5
CdS/Ni ₃ S ₂ /PNF ¹	1.0 M KOH	10	110	6
		100	~530	
MoO _x /Ni ₃ S ₂ /NF	1.0 M KOH	10	136	7
		100	310	
		200	~360	
		500	~520	
NF-Ni ₃ S ₂ /NF	1.0 M KOH	20	230	8
		100	~340	
		200	~410	
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂ /NF	1.0 M KOH	10	300	9
		100	570	
Ni ₃ S ₂ @G@C0 ₉ S ₈	1.0 M KOH	10	210	10
		100	~350	
Co ₃ O ₄ @Ni ₃ S ₂ /NF	1.0 M KOH	20	260	1
		100	~500	
NiCoS/Ti ₃ C ₂ T _x	1.0 M KOH	10	365	11
NiCoP	1.0 M KOH	20	410	12
NiMnP		20	450	
NiMoP		20	430	
Ni/Ni ₃ C	0.1 M KOH	10	350	13
Ni ₁₁ (HPO ₃) ₈ (OH) ₆ /N	1.0 M KOH	10	232	14
F		100	362	
Ni(OH) ₂ /Ni ₃ S ₂	1.0 M KOH	20	270	15
		100	400	
CuO@Ni-PNA/CF ^{II}	1.0 M KOH	30	275	16
		100	~360	
		200	~380	
Co-CuO NA/CF ^{III}	1.0 M KOH	50	299	17
		100	330	

Table S1. CuNi/NF with several Ni-based and Cu-based OER catalysts reported recently.

I: PNF: plasma-treated nickel foam

II, III: CF: copper foam

Reference

1. Y. Gong, Z. Xu, H. Pan, Y. Lin, Z. Yang and X. Du, *J. Mater. Chem. A*, 2 018, **6**, 5098-5106.

- 2. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, *ACS Catal.*, 2017, 7, 2357-2366.
- 3. D. Merki, S. Fierro, H. Vrubel and X. Hu, Chem. Sci., 2011, 2, 1262-1267.
- 4. H. Ashassi-Sorkhabi and P. La'le Badakhshan, *Appl. Surf. Sci.*, 2017, **419**, 165-176.
- 5. T. A. Ho, C. Bae, H. Nam, E. Kim, S. Y. Lee, J. H. Park and H. Shin, *ACS Appl. Mater. Interfaces*, 2018, **10**, 12807-12815.
- 6. S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu and C. Li, *ACS Appl. Mater. Interfaces*, 2017, **9**, 29660-29668.
- Y. Wu, G.-D. Li, Y. Liu, L. Yang, X. Lian, T. Asefa and X. Zou, *Adv. Func. Mater*, 2016, 26, 4839-4847.
- L. Zeng, K. Sun, Z. Yang, S. Xie, Y. Chen, Z. Liu, Y. Liu, J. Zhao, Y. Liu and C. Liu, *J. Mater. Chem. A*, 2018, 6, 4485-4493.
- Y. Y. Wu, Y. P. Liu, G. D. Li, X. Zou, X. R. Lian, D. J. Wang, L. Sun, T. Asefa and X. X. Zou, *Nano Energy*, 2017, 35, 161-170.
- 10. Q. C. Dong, Y. Z. Zhang, Z. Y. Dai, P. Wang, M. Zhao, J. J. Shao, W. Huang and X. C. Dong, *Nano Res.*, 2018, **11**, 1389-1398.
- H. Zou, B. He, P. Kuang, J. Yu and K. Fan, *ACS Appl. Mater. Interfaces*, 2018, 10, 22311-22319.
- 12. H.-W. Man, C.-S. Tsang, M. M.-J. Li, J. Mo, B. Huang, L. Y. S. Lee, Y.-C. Leung, K.-Y. Wong and S. C. E. Tsang, *Chem. Commun.(Cambridge, England)*, 2018.
- 13. Q. Qin, J. Hao and W. Zheng, ACS Appl. Mater. Interfaces, 2018, 10, 17827-17834.
- P. W. Menezes, C. Panda, S. Loos, F. Bunschei-Bruns, C. Walter, M. Schwarze, X. Deng, H. Dau and M. Driess, *Energy Environ. Sci.*, 2018, 11, 1287-1298.
- 15. X. Du, Z. Yang, Y. Li, Y. Gong and M. Zhao, J. Mater. Chem. A, 2018, 6, 6938-6946.
- 16. B. Chang, S. Hao, Z. X. Ye and Y. C. Yang, *Chem. Commun.*, 2018, **54**, 2393-2396.
- 17. X. L. Xiong, C. You, Z. Liu, A. M. Asiri and X. P. Sun, *ACS Sustain. Chem. Eng.*, 2018, **6**, 2883-2887.